• Title/Summary/Keyword: waste rubber

Search Result 143, Processing Time 0.028 seconds

Shear Properties of Bottom Ash-Crumb Rubber Mixture Reinforced with Waste Fishing Net Using Triaxial Test (삼축압축시험에 의한 폐어망 보강 저회-폐타이어 혼합토의 전단특성)

  • Kwon, Soon-Jang;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.81-91
    • /
    • 2013
  • This paper investigates the shear properties of bottom ash-crumb rubber mixture reinforced with waste fishing net. Mixtures used in this experiment were prepared at 2 different percentages of crumb rubber (2 mm~10 mm) content (i.e., 0%, 50% by weight of the dry bottom ash). In this study several series of triaxial tests were carried out on the six different specimens : unreinforced bottom ash, reinforced bottom ash with 1 or 2 layers, unreinforced mixture, reinforced mixture with 1 or 2 layers. The experimental results indicated that the shear properties of bottom ash-crumb rubber mixture were strongly influenced by reinforcing layer of waste fishing net and crumb rubber addition. It is shown that the internal friction angle of bottom ash-crumb rubber mixture decrease with addition of crumb rubber due to the compression properties of crumb rubber. However, the internal friction angle of the mixture increased with an increase in reinforcing layer due to interlocking effect and friction between mixture and waste fishing net.

Behavior of hybrid concrete beams with waste rubber

  • Al-Azzawi, Adel A.;Saad, Noora;Shakir, Dalia
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.245-253
    • /
    • 2019
  • The studies on the applications of waste materials in concrete have been increased in Iraq since 2003. In this research, rubber wastes that resulting from scrapped tires was added to concrete mix with presence of superplasticizer. The mechanical properties of concrete and workability of concrete mixes were studied. The used rubber were ranging in size from (2-4) mm with addition percentages of (0.1% and 0.2%) by volume of concrete. The results of mechanical properties of concrete show that rubber enhance the ductility, and compressive and tensile strength compared to concrete without it. Also, the flexural behavior of hybrid strength concrete beams (due to using rubber at the bottom or top layer of section) was investigated. The rubber concrete located at bottom layer gives higher values of ultimate loads and deflections compared to the beam with top layer. A similar response to fiber concrete beam (all section contains 0.1% rubber) was recognized. Finite element modeling in three dimensions was carried for the tested beams using ABAQUS software. The ultimate loads and deflection obtained from experimental and finite elements are in good agreements with average difference of 8% in ultimate load and 20% in ultimate deflection.

Preparation and Characterization of Polypropylene/Waste Ground Rubber Tire Powder Microcellular Composites by Supercritical Carbon Dioxide

  • Zhang, Zhen Xiu;Lee, Sung-Hyo;Kim, Jin-Kuk;Zhang, Shu Ling;Xin, Zhen Xiang
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.404-410
    • /
    • 2008
  • In order to obtain 'value added products' from polypropylene (PP)/waste ground rubber tire powder (WGRT) composites, PP/WGRT microcellular foams were prepared via supercritical carbon dioxide. The effects of blend composition and processing condition on the cell size, cell density and relative density of PP/WGRT micro-cellular composites were studied. The results indicated that the microcellular structure was dependent on blend composition and processing condition. An increased content of waste ground rubber tire powder (WGRT) and maleic anhydride-grafted styrene-ethylene-butylene-styrene (SEBS-g-MA) reduced the cell size, and raised the cell density and relative density, whereas a higher saturation pressure increased the cell size, and reduced the cell density and relative density. With increasing saturation temperature, the cell size increased and the relative density decreased, whereas the cell density initially increased and then decreased.

Recycling of Waste Rubber by De-link System (I) (De-link R를 이용한 폐고무 재활용(I))

  • Hwang, Sung-Hyuk;Hong, John-Hee;Yoo, Tae-Uook;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.79-85
    • /
    • 2001
  • It goes to be serious with environmental pollution cause waste rubber. That is why there are lot of studies for efficient recycle. The purpose of this study is to improve the physical properties of EPDM powder by using De-link system. We changed on the size of waste rubber powder and De-link contents. we examined the physical, rheological, mechanical properties. And also examined cross-link state at various De-link. Also we carried out morphological studies after making the weather strip's feature by optical microscope.

  • PDF

A Study on Recycling of Waste Tire (폐타이어 재 자원화를 위한 연구)

  • 이석일
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.38-44
    • /
    • 2000
  • Compared to other waste, waste tire has much discharge quantity and calorie. When we use waste heat from waste tire, it can be definitely better substitute energy than coal and anthracite in high oil price age. To use as a basic data for providing low cost and highly effective heating system, following conclusion was founded. Annual waste tire production was 19,596 million in 1999, Recycling ratio was almost 55% and more than 8.78 million was stored. Waste tire has lower than 1.5% sulfur contain ratio which is resource of an pollution, So it is a waste fuel which can be combustion based on current exhaust standard value without any extra SOx exclusion materials. Waste tire has 9,256Kcal/kg calorific value and it is higher than waste rubber, waste rubber, waste energy as same as B-C oil. When primary and second air quantity was 1.6, 8.0 Nm$^3$/min, dry gas production time was 270min and total combustion time was 360 min. In the SOx, NOx, HC of air pollution material density were lower than exhaust standard value at the back of cyclone and dusty than exhaust standard value without dust collector.

  • PDF

Effects of a Crosslinking Agent and a Compatibilizer on the Mechanical and Rheological Properties of Waste PP and Waste Ground Rubber Tire Composites

  • Kim, Donghak;Kim, Seonggil;Lee, Minji;Lee, Chanhee;Lee, Horyong;Lee, Seongwoo;Lee, Suhyeon;Moon, Myeongsuk;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • In this study, we investigated the effects of a crosslinking agent and a compatibilizer on the mechanical and rheological properties of waste PP and waste ground rubber tire (WGRT) composites. In order to simulate a commercial TPV, the component of waste PP and WGRT was fixed at 30 and 70 wt%, respectively. With the simple addition of SEBS-g-MA into the waste PP/WGRT composites, the tensile strength of the composite was decreased, whereas both the elongation at break and impact strength were significantly increased because of rubbery characteristics of SEBS-g-MA. In order to further improve the properties of the composites, the waste PP/WGRT/SEBS-g-MA composites was revulcanized with dicumyl peroxide (DCP). As expected, mechanical properties of the revulcanized composites was generally improved. Especially, with 15 and 1 phr of SEBS-g-MA and DCP, elongation at break was highest value of about 183% because of the recross-linking of WGRT without chain scission of the main chain. It was found that complex viscosity of the revulcanized composite increased which might verify further vulcanization of the WGRT.

Combustion Characteristics of E.V.A., Rubber Waste Treatment by Fixed-Bed Incinerator. (E.V.A., 고무폐기물 소각에 따른 폐가스 처리의 연구)

  • Bae, Byung-Hoon;Jang, Seong-Ho;Lim, Gyoung-Teck
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.221-227
    • /
    • 1996
  • The objectives of this study are to examine combustion characteristics of E.V.A. and rubber wastes by fixed-bed incinerator, The results are as follows. Combustion temperature with time rises rapidly, and mass of E.V.A. reduces at short time in E.V.A. combustion. In variation of air-fuel ratio (m), ice ideal values of m of E.V.A. and rubber are 2.5, 1.5 respectively. Mixed-waste combustion is more economic than single E.V.A. combustion, because we can get high combustion efficiency (94.0~99.0%) at 2.0 air-fuel ratio of mixed-waste combustion. Removal efficiencies of SO2 at cooling tower are about 20%. The combustion efficiencies of rubber are over 98.0% according to the experimental conditions.

  • PDF

Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

  • Thakare, Akshay A.;Siddique, Salman;Singh, Amardeep;Gupta, Trilok;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.433-450
    • /
    • 2022
  • The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.

Development of Rubber Composite Materials Using Waste EPDM (폐 EPDM을 이용한 고무 복합 소재 개발)

  • Park, Dong-Kyu;Hong, Yeo-Joo;Jeong, Keuk-Min;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.121-128
    • /
    • 2012
  • Waste EPDM(W-EPDM) collected from the automotive weather strip and the gasket of a laundry machine has not been effectively recycled. Using this W-EPDM powder and other ingredients, i.e., binder(polyolefin resin, polyolefin elastomer, etc.), filler and additives, various economic rubber composites were made by extrusion. In advance of main experiments, the effects of ultrasonic treatment of W-EPDM on the property of rubber composites, comparison in the property of the composites of W-EPDM with those of virgin and devulcanized EPDM, and waste tire rubber were investigated. Also, the properties of the rubber composites extruded with a 12-screw extruder were compared with those extruded with twin-screw extruder. Various W-EPDM composites for synthetic turf filler and car mat were extruded and injection molded, and 3 main properties of tensile strength, elongation and hardness were investigated to develop economical and proper recipes of the rubber composites.

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.