• 제목/요약/키워드: waste oil

Search Result 532, Processing Time 0.026 seconds

A Review on R&D and Commercialization of Oil Recovery from Waste Plastics by Pyrolysis (폐합성수지(廢合成樹脂)류의 열분해(熱分解) 유화(油化) 기술(技術) 동향(動向))

  • Shin, Dae-Hyun;Nho, Nam-Sun;Kim, Sung-Soo;Kim, Kwang-Ho;Jeon, Sang-Gu
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.3-12
    • /
    • 2010
  • Recently, the waste energy utilization has become the main interest in energy industries, due to high oil prices, the low carbon, green growth policy and the RPS (Renewable Portfolio Standards) of our government. Therefore, energy guzzling companies such as district heating companies, textile industries are replacing energy to RDP/RPF. Especially, a lot of big companies are carrying out survey to commercialize the waste plastics pyrolysis technologies developed in Korea. In this paper, status of the pyrolysis technology of Korea were reviewed overall including basis of technology, waste plastics resources, research & development, and commercialization.

Biodiesel Production from Waste Cooking Oil Using Alkali Catalyst and Immobilized Enzyme 1. Fatty Acid Composition (알칼리 촉매와 고정화 효소를 이용한 폐식용유로 부터 바이오 디젤 생산 1. 지방산 조성)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1247-1256
    • /
    • 2010
  • Since biodiesel as bioenergy is defined as ester compounds formed by esterification of animal/vegetable oils, in this study three vegetable cooking oils (market, waste and refined waste ones) were esterified by reactions of alkali catalyst and immobilized enzyme. The fatty acid composition of the formed ester compounds was analyzed to investigate the feasibility of biodiesel production. By lipolysis (i.e, hydrolysis of Triglyceride (TG)), all three vegetable oils used in this study were found to produce Diglyceride (DG), Monoglyceride (MD) and Fatty acid ethylester (FAEE). However, the amount of produced FAEE (which can be used as an energy source) was in the increasing order of market cooking oil, waste one and refined waste one. With NaOH catalyst, FAEE was produced about 24.92, 17.63 and 11.31 % for the respective oils while adding Lipozyme TL produced FAEE about 43.54, 38.16 and 24.47 %, respectively. This indicates that enzyme catalyst is more effective than alkali one for transesterification. In addition, it was found that the composition of fatty acids produced by hydrolysis of TG was unchanged with alkali and immobilized enzyme reactions. Thus it can be expected that stable conditions remain in the course of mixing with gasoline whose composition is similar to that of the fatty acids.

Recycling of Cutting Oil from Silicon Waste Sludge of Solar Wafer (태양광용 웨이퍼 실리콘 폐슬러지로부터 절삭유의 재생)

  • Um, Myeong-Heon;Lee, Jong-Jib;Ha, Beom Yong
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.274-280
    • /
    • 2016
  • In this study, it was to develop a chemical method that can recycle the cutting oil which accounts for about 25% of the cost of the process among containing materials of silicon waste sludge generated in the process for producing a solar cell wafer. The 7 types of reagents have been used, including acetone, HCl, NaOH, KOH, $Na_2CO_3$, HF, $CH_2Cl_2$, etc. for this experiment. And It was carried out at a speed of 3000 rpm for 60 minutes centrifugation after performing a reaction with a waste sludge at various concentrations. As a result, the best reagents and conditions for separating the solid such as a silicon powder and a metal powder and liquid cutting oil were identified as 0.3 N NaOH. It is found to be pH 6.05 in a post-processing recycled cutting oil with 0.3 N NaOH after reaction of waste sludge and 0.1 N HCl which is effective to remove metal powder in order to adjust the pH to suit the properties of the weak acid is a commercially available cutting oil and it showed excellent turbidity than when applied to sludge with 0.3 N NaOH alone. The results of FT-IR analysis which can compare the properties of the commercially available cutting oil shows it has a possibility of recycling oil. The cutting oil recovery rate obtained through the experiment was found to be 86.9%.

New Technology Development for Production of Alternative Fuel Oil from Thermal Degradation of Plastic Waste (폐플라스틱의 열분해에 의한 대체 오일 생산의 신기술 개발)

  • Lee Kyong-Hwan;Roh Nam-Sun;Shin Dae-Hyun
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.37-45
    • /
    • 2006
  • For treating a huge amount of plastic waste with the environment problem, pyrolysis of plastic waste into alternative fuel oil is one or important issue in recycling methods. This study was introduced over the trend or generation of plastic waste, in Korea pyrolysis technology in domestic and foreign countries, basic technology in pyrolysis process and new technology of pyrolysis developed in KIER (Korea Institute of Energy research). The characteristics of process developed in KIER are the continuous loading treatment or mixed plastic waste with an automatic control system, the minimization of wax production by circulation pyrolysis system in non-catalytic reactor, the reuse of gas produced and the oil recovery from sludge generated in pyrolysis plant, which have greatly the advantage economically and environmetally. The experiment result data in 300 ton/yr pilot plant showed about $81\;wt\%$ liquid yield for 3 days continuous reaction time, and also the boiling point distribution of light oil (LO) and heavy oil (HO) produced in distillation tower was a little higher than that of commercial gasoline and diesel, respectively.

New Technology Development for Production of Alternative Fuel Oil from Thermal Degradation of Plastic Waste (폐플라스틱의 열분해에 의한 대체 오일 생산의 신기술 개발)

  • Lee, Kyong-Hwan;Roh, Nam-Sun;Shin, Dae-Hyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.34-46
    • /
    • 2005
  • For treating a huge amount of plastic waste with the environment problem, pyrolysis of plastic waste into alternative fuel oil is one of important issue in recycling methods. This study was introduced over the trend of generation of plastic waste, pyrolysis technology in domestic and foreign countries, basic technology in pyrolysis process and new technology of pyrolysis developed in KIER (Korea Institute of Energy Research). The characteristics of process developed in KIER are the continuous loading treatment of mixed plastic waste with an automatic control system, the minimization of wax production by circulation pyrolysis system in non-catalytic reactor, the reuse of gas produced and the oil recovery from sludge generated in pyrolysis plant, which have greatly the advantage economically and environmetally. The experiment result data in 300 ton/yr pilot plant showed about 81 wt% liquid yield for 3 days continuous reaction time, and also the boiling point distribution of light oil (LO) and heavy oil (HO) produced in distillation tower was a little higher than that of commercial gasoline and diesel, respectively.

  • PDF

Durability and Strength of Dense Grate Permeable Concrete Using Silica sand and Flexible Alkyd Resin (유변성(油變性) 알키드 수지(樹脂)와 규사(硅砂)를 사용(使用)한 밀입도(密粒度) 투수(透水)콘크리트의 강도(强度) 및 내구특성(耐久特性))

  • Kim, In-Jung;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.36-42
    • /
    • 2010
  • Researches on resources recycling in the field of construction have made an extensive progress such as recycled aggregate of waste concrete and recycling of asphalt. On the other hand, there are almost never researches on pavement method with used waste frying oil. In South Korea, 0.2 million ton used waste frying oil is discharged every year. It is guessed that about 0.1 million ton used waste frying oil can be collected. If used waste frying oil is recycled, it is expected that disuse cost will be reduced and water pollution of rivers will be prevented. Therefore, the purpose of the study was to evaluate on mechanical features (strength, water resistance, chemical resistance, abrasion resistance, freezing and thawing resistance and permeable coefficient) whether dense graded permeable concrete mixing silica sand with flexible alkyd resin manufactured by making ester reaction with collected used waste frying oil to make alkyd resin could be applied to road pavement for non-roadway. The results of the study were as follows. In flexural strength, it had 1.6 times as much as road design standard 4.5MPa. In water resistance, chemistry resistance and freezing and thawing resistance, they had lack of strength in early age. As age went by, they didn't have large changes. And curing temperature had phenomenon of increase in strength at rather low temperature than high temperature by glass transition temperature of resin. Therefore, considering workability, strength and durability when it was applied to road pavement, it was reasonable that the mixing ratio of flexible alkyd resin was 10~15% in comparison with silica sand weight.

Heating Properties of Cement Composites using Waste Carbon Materials (폐탄소 소재를 활용한 시멘트복합체 발열성능 평가)

  • Koo, Hyun-Chul;Cho, Hyeong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.213-214
    • /
    • 2023
  • The burden of housing heating costs has increased as energy prices such as global oil prices (28.1%), LNG (38%) and minerals (100%) have soared due to the Ukraine crisis. Accordingly, an electrically conductive cement composites had developed using waste carbon materials such as waste cathode materials, waste CNTs, and waste carbon fibers, and the heat generation performance was evaluated.

  • PDF

Refined Fuel Production Using Municipal Sewage Sludge(I) - Preparation of Refined Solid Fuels from Organic Sludge - (하수슬러지의 정제 연료화 기술(1) - 유기성 슬러지의 정제 고체연료 제조 -)

  • Kang, S.K.;Lee, S.J.;Ryu, I.S.;Lee, K.C.
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.47-56
    • /
    • 2007
  • Utilization of sewage sludge for industrial fuel should be considered in appropriate calory with low emission of environmental pollutants and the amount of sewage sludge for continuously long-time operation. For the low grade fuel(<4,000kcal/kg), one of proper processes is that coal and oil are added into sewage sludge to remove impurities and increase calory(>7,000kcal/kg) and the amount of fuel having sewage sludge. Recently, 2-step agglomeration has been attempted by secondarily agglomerate sewage sludge onto the primary nuclei formed by agglomeration of coal and oil. Furthermore, sawdust and waste oil can substitute about 1/3 each for coal and mineral oil consumed in this process, which will lead to securing alternative energy resources from environmental pollutants as well as cost reduction.

  • PDF

Preliminary Study on Disposal of Waste Wooden Sleeper by Thermal-Extraction (열추출기술을 이용한 폐목침목처리 기초연구)

  • Kwon, Tae-Soon;Lee, Jae-Young;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2875-2878
    • /
    • 2011
  • The wooden sleeper has been used at the railway track. Recently the concrete sleeper is pushing the wooden sleeper out, but huge amount of waste wooden sleepers are discharged every year. Due to the contaminant of waste wooden sleeper, its disposal is very difficult. Commonly a wood preservative such as creosote is used in the manufacturing process and it becomes major contaminant after use. And the wooden sleeper is contaminated by diesel from locomotives and lubricant oil from the maintenance of railway turnout. Currently the limitary disposal methods can be used because of high toxicity of waste wooden sleeper. Therefore the preliminary study on thermal-extraction of contaminants such as creosote, diesel and lubricant oil from waste wooden sleeper was conducted and the effects of factors were investigated.

  • PDF

Cell Wall Structure of Various Tropical Plant Waste Fibers

  • Abdul Khalil, H.P.S.;Siti Alwani, M.;Mohd Omar, A.K.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • A comparative study of the structure and organization of the primary and secondary walls in different types of tropical plant waste fibers was carried out using transmission electron microscopy (TEM). The thickness of each layer was also measured using Image Analyzer. TEM micrographs haveconfirmed that cell wall structure of all six types of tropical plant waste fibers (empty fruit bunch, oil palm frond, oil palm trunk, coir, banana stem and pineapple leaf) has the same ultrastructure with wood fibre. The fibers consisted of middle lamella, primary and thick secondary wall with different thickness for different types of fibers. The secondary wall was differentiated into a $S_1$ layer, a unique multi-lamellae $S_2$ layer, and $S_3$ layer.