• Title/Summary/Keyword: waste mortar

Search Result 263, Processing Time 0.023 seconds

Fundamental Properties and Radioactivity Shielding Characteristics of Mortar Specimen Utilizing CRT Waste Glass as Fine Aggregate (폐 브라운관(CRT) 유리를 잔골재로 대체한 모르타르 시험체의 기초 물성 및 방사선 차폐 특성)

  • Choi, Yoon-Suk;Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.163-170
    • /
    • 2019
  • In recent years, various types of industrial wastes are rapidly increasing with the development of high-tech industries. Specially, high-density waste glass of CRT TV containing heavy metals are buried or disposed of due to reprocessing costs and environmental pollution problems. Thus, more basic research is needed to recycle waste such as CRT waste glass such. In this study, the fundamental properties and radiation shielding performance of mortar specimens substituted CRT waste glass as a fine aggregate were analyzed and their application to shielding materials was evaluated. According to the results, the bulk density of mortar specimen replaced with CRT waste glass was increased and the compressive strength and flexural strength were decreased. Meanwhile, the CRT waste glass substitute specimen containing a large amount of lead component showed a higher shielding performance than the general mortar specimen. Especially, the linear attenuation coefficient of CRT waste glass in $122KeV{\cdot}^{57}Co$ of the low energy field was 2.5 times higher than that of normal specimen.

Basic Performance Evaluation of Dry Mortar Recycled Basalt Powder Sludge (현무암석분 슬러지를 재활용한 드라이몰탈의 기초적 성능평가)

  • Ko, Dongwoo;Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • This study was carried out to investigate the possibility of using basalt powder sludge instead of sand in a normal cement dry mortar as a way to recycle basalt powder sludge, which is a waste product from the manufacturing a process of basalt in Jeju. Basic performance evaluations of the dry mortar material included a compressive strength test, a flexural strength test, and SEM to observe the micro structure. The compressive and flexural strengths were increased to a replacement ratio of 21% of basalt powder sludge, whereby a strength enhancement of about 40% greater than that of normal dry mortar was shown. However, the creation of hydration products affected the replacement ratio of the basalt powder sludge. The possibility of using basalt powder sludge waste was identified in this study, and results showed that the basalt powder sludge waste could be used as a material for a secondary product of concrete.

Effect of accelerators with waste material on the properties of cement paste and mortar

  • Devi, Kiran;Saini, Babita;Aggarwal, Paratibha
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.153-159
    • /
    • 2018
  • Accelerators are used to speed up the construction by accelerating the setting time which helps in early removal of formwork thus leading to faster construction rate. Admixtures are used in mortar and concrete during or after mixing to improve certain properties of material which cannot be achieved in conventional cement mortar and concrete. The various industrial by products make nuisance and are hazardous to ecosystem as well. These wastes can be used in the construction industries to reduce the consumption of cement/aggregates, cost; and save the energy and environment by utilising waste and eliminate their disposal problem as well. The effect of calcium nitrate and triethanolamine (TEA) as accelerators and marble powder (MP) as waste material on the various properties of cement paste and mortar has been studied in the present work. The replacement ratio of MP was 0-10% @ 2.5% by weight of cement. The addition of calcium nitrate was 0% and 1%; and variation of addition of TEA was 0-0.1@ 0.025% and 0.1-1.0@ 0.1% by weight of cement. On the basis of setting time, some mix proportions were selected and further investigated. Setting time and soundness of cement paste; compressive strength and microstructure of mortar mix of selected mix proportions were studied experimentally at 3, 7 and 28 days aging. Results showed that use of MP, calcium nitrate, TEA and their combination reduced setting time of cement paste for all the mixes. Addition of calcium nitrate increased the compressive strength at all curing ages while MP and TEA decreased the compressive strength. The mechanism of additives was discussed through scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis of the specimens.

Fundamental Properties of Zero-Cement Mortar with Variation Replacement Ratio of Incineration Waste Ash and Gypsum (무수석고와 소각장애시의 치환율 변화에 따른 고로슬래그 미분말 활용 무 시멘트 모르타르의 기초적특성)

  • Lu, Liang Liang;Kim, Jun Ho;Baek, Byung Hoon;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.242-243
    • /
    • 2014
  • In this study, industrial by-products including blast furnace slag, incineration ash and waste gypsum were used with recycled fine aggregates to manufacture the zero-cement mortar. The replacement ratio of anhydrite gypsum was fixed as 0, 10%, 20% the replacement ratio fo WA1 was fixed as 0.5% and 1.0%, respectively. It could be identified that when the replacement of gypsum was 20% and WA1 of 1.0%, the strength could be in the range of normal strength.

  • PDF

Effects of waste glass aggregate on thermal behavior of fly ash alkali activated mortar

  • Sasui, Sasui;Kim, Gyu Yong;Pyeon, Su Jeong;Eu, Ha Min;Lee, Yae Chan;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.115-116
    • /
    • 2022
  • This study incorporates fine waste glass (GS) as a replacement for natural sand (NS) in fly ash (FA) based alkali activated mortar (AAm). AAms were heated at elevated temperature of 200℃, 400℃, 600℃, and 800℃ to explore the residual mass, compressive strength, thermal expansion and change in microstructure of matrix. Results showed greater resistance of AAms with increasing GS content to 50% at each temperature. Owing to the melting of GS at 800℃, the greater matrix bond was observed for AAm incorporating 75% and 100% GS as a result, the residual compressive strength was increased.

  • PDF

An Experimental Study of the Recycled Cement Manufacturing Method for Improving the Material Quality (재생시멘트의 품질향상을 위한 제조방법에 관한 연구)

  • Oh, Sang-Gyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.143-149
    • /
    • 2004
  • The recycle of domestic waste concrete is, however, still in an early stage, and it has been only partially being used for the road fillers. As a counter-plan of activating recycled concrete, we have confirmed the hydration possibility of the waste concrete powder from the experiment on recycling the aggregate powder since 2000. Though that study, we have known that the strength is increasing when the baking time is longer, and baking temperature maintain in $700^{\circ}C$. Also, the quality is lowered because of the fine aggregate powder which has a bad influence on flowability & compression strength by adhesion of mortar on the aggregate face. Therefore, mortar and interfacial separation of aggregate are large in proper quality for concrete recycling is expected that affect. The purpose of this study is to investigate effective aggregate separation and to determine the most suitable production method controlling the duration of baking time for recycled cement from the compressive strength, X-ray diffraction and ingredient analysis test.

Enhancement in the quality of mortar which uses uses 3-type blast-furnace slag cement and circulated fine aggregate, according to replacement ratio changes of waste refractories and desulfurized plaster (폐내화물 및 탈황석고의 치환율 변화에 따른 3종 고로슬래그 시멘트와 순환잔골재를 사용하는 모르타르의 품질향상)

  • Lee, Jae-Jin;Lee, Jea-Hyeon;Baek, Cheol;Kim, Min-Sang;Yoon, Won-Geun;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.56-57
    • /
    • 2016
  • Recently amongst Korea's construction companies there has been heightened interest in environment load reduction and resource recycling. As a result, the construction industry is examining recycled materials alternative to cement and blast-furnace slag (BS henceforth) cement, such as waste refractories and desulfurized plaster. This study analyzes the liquidity and intensity characteristics of mortar according to changes in replacement ratios of waste refractories and desulfurized plaster, used as industry by-products in mortar environments that use BS 3-type cements and circulated fine aggregate. As a result, the greater the increase in replacement ratios of desulfurized plaster, the greater the increase in liquidity and air quantity, as well as compression strength.

  • PDF

Valorization of Cork Waste to Improve the Anti-Corrosion Properties of Concrete Reinforcements

  • Belkhir, S.;Bensabra, H.;Chopart, J.P.
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.100-110
    • /
    • 2022
  • Corrosion of steel reinforcement is the most important mode of concrete structures damages. It strongly depends on the composition and physicochemical properties of the cementitious medium. The use of waste materials as lightweight aggregates in concrete is environmentally recommended in polluted environments such as marine and/or industrial atmospheres in order to reduce its porosity and ensure the requested protection of reinforcing steel. The present study investigated the effect of waste cork addition on corrosion resistance of steel rebar in mortar specimen prepared in the laboratory. The main objective of this study was to improve the corrosion resistance of reinforcing steel. Another objective of this study was to valorize this ecological product and preserve the environment. Results obtained from various electrochemical tests indicated that the presence of a fine cork powder substantially improved the corrosion resistance of steel in the mortar contaminated by chloride ions. This improvement was reflected by a notable decrease in corrosion current density and a shift of corrosion potential of the steel towards more noble values. Moreover, the presence of a fine cork powder in the mortar had no adverse effect on its mechanical properties.

Properties of Heat-transfer on Lightweight Concrete Using Bottom ash (Bottom ash를 이용한 기포콘크리트의 열전도 특성)

  • 이승한;이중우;공성훈;정해구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.93-102
    • /
    • 1995
  • In this study the characteristics of adiabatic and lightweight of cement mortar was improved by using porous Bottom ash which was industrial waste. when a foaming agent was added, the characteristics of mortar using sand and Bottom ash were compared. From the empirical results the heat-transfer ratio for the mortar using Bottom ash only was shown the lower values than that for a general mortar, and the lightweight concrete with unit weight of 1.5t/$\textrm{m}^3$ could be made. When the foaming agent of 0.25% and 0.5% in usage of cement was added to that, the compressive strength scould be measured as 5 and 8times of the general mortar respectively. Also, the characteristics of adiabatic for that mortar was great improved so that the heat-transfer ratio was fallen to 0.172kcal/$mh^{\circ}C$.

  • PDF

A Study on the Properties of Mortar using Wet-type Waste Sludge according to Heating Temperature (가열온도별 습식방식 폐슬러지를 활용한 모르타르의 특성에 관한 연구)

  • Kang, Suk-Pyo;Cho, Ku-Young;Lee, Jun;Kim, Chang-Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 2011
  • Recently, urban redevelopment programs and expansion of social infrastructure have caused massive amounts of construction waste in construction fields, and the mounds of it keep increasing every year. The disposal of construction waste is emerging as a national and social issue and the recycled powder generated by the treatment process of waste concrete is all being abolished or buried. Therefore, the purpose of this study is to utilize waste sludge generated by the wet-type treatment process of waste concrete as materials(binder, filler) for cement composite. This study evaluates physical and mechanical properties of mortar using recycled powder according to heating temperature, contents and applications. As a result of the chemical analysis, recycled powder is composed mainly of CaO and $SiO_2$, and that it is even lower in the content of CaO than OPC. The charateristics of mortar using recycled powder, according to drying and heating temperature, shows that as the heating temperature increases, flow decreases. Also, compressive strength and porosity of mortar using recycled powder was superior when heating temperature was $600^{\circ}C$. Thus, it is revealed that an effective development of recycled powder is possible since the binder by cement composite recovers a hydraulic property during heating at $600^{\circ}C$.

  • PDF