• Title/Summary/Keyword: waste landfill site

Search Result 200, Processing Time 0.02 seconds

The degradation characteristics of waste cigarette filter in outdoor (실외에서 발생되는 폐 담배필터의 분해특성)

  • 김주학;윤오섭;이문수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.2
    • /
    • pp.136-143
    • /
    • 1999
  • This study was conducted to evaluate the degradation characteristics of waste cigarette filters under 0, 5, 10, and 15cm in depth from soil surface by environmental conditions. Weather was the most important factor during degradation of waste cigarette filters in this study. Bulking of cellulose acetate filaments exposed on soil surface was observed after 2 months, but the form of filter was kept up after 12 months. The treated cigarette filters in soil landfill revealed a little different degradation pattern at each soil landfill depth, The sample in 5cm depth of soil was more degraded then other site. A fluffy appearance of cellulose acetate filaments in the control filter rods was also developed more strongly in soil landfill then on soil surface. From the observation of waste cigarette filters by scanning electron microscopy, much degradation of the fiber of waste cigarette filters could be ascertained in soil landfill. The weight of waste cigarette filters under 5cm from soil surface was reduced about 50%, and the tensile strength of the samples in soil surface and under 5cm from soil surface were reduced 66.0% and 92.4%, respectively. The microbial experiment date that the viable cell number in microbial population and cellulolytic microorganisms showed the maximum values under 5cm from soil surface, suggest that microorganisms in soil play an important roll in the degradation of acetate cigarette filters.

  • PDF

Preliminary Estimation of Waste Landfill Sites Using Geo-Spatial Information System and Analytic Hierarchy Process (GSIS와 AHP법을 이용한 쓰레기 매립지 예비 평가 방법)

  • 양인태;김연준;최광식
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • According to grow interest in environmental quality with improvements of a standard of living site selection problems of environmental hatred facilities, such as waste landfill sites caused regional conflicts. This study investigates a waste landfill estimation method that was used to storage, management, analysis and display of environmental information provided by goo-spatial information system(GSIS) analytic hierarchy process(AHP) as a decision-making method. If GSIS is integrated with AHP, site selection problems of environmental hatred facilities shall be able to very useful, because of AHP with flexibility which appropriately reflect opinions of the related group.

  • PDF

Long Term Affecting Factors on Major Water Quality Items of Landfill Leachate (매립장 침출수 주요 수질항목에 대한 장기 영향요소)

  • Chun, Seung-Kyu;Kim, Min Hyuk;Won, Jong Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.24-33
    • /
    • 2021
  • Analysis of long term affecting factors on water quality items of gas emission form (BOD, COD) and leachate emission form (T-N, non-bio-degradable COD (NBDCOD)) was performed for the SUDOKWON 1st Landfill Site (LS1) and 2nd Landfill Site (LS2). As landfill gas was generated, BOD and COD decreased from 6,887 and 20,025 mg/L in 1993 to 49.5 and 670.2 mg/L in 2019, respectively. TN and NBDCOD increased with waste decomposition but gradually decreased after landfill closure because of the precipitation infiltration effect. Due to the drastic decline of carbon in the leachate, the BOD/TN ratios of LS1 and LS2 declined from 13.0 and 17.0 during early stage of the landfill to 0.07 and 0.16 in 2019, respectively; LS2 and NBDCOD/COD increased from 0.25 to 0.65 during the same period. These conditions caused carbon deficiency in denitrification treatment and a chemical post-treatment request for NBDCOD. The different behaviors of gas emission and leachate emission items suggest the necessity of different strategic approaches in the long term perspective.

Conformity Enhancement of Methane Generation Model for In-Service Landfill Site (운영 중인 매립장에서의 메탄가스 발생 모델의 정합도 향상)

  • Chun, Seung-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.213-223
    • /
    • 2016
  • The validity of landfill gas models is an important problem considering that they are frequently used for landfill-site-related policy making and energy recovery planning. In this study, the Monte Carlo method was applied to an landfill gas generation model in order to enhance conformity. Results show that the relative mean deviation between measured data and modeled results (MD) decreased from 19.8% to 11.7% after applying the uncertainty range of Intergovernmental Panel on Climate Change (IPCC) to the methane-generation potential and reaction constants. Additionally, when let reaction constant adjust derived errors from all other modeling components, such as model logic, gauging waste, and measured methane data, MD decreased to 6.6% and the disparity in total methane generation quantity to 2.1%.

Estimation of Methane Generation Rate and Potential Methane Generation Capacity at Cheongju Megalo Landfill Site Based on LandGEM Model (LandGEM 모델을 이용한 청주권 생활폐기물 매립장의 매립지가스 발생상수 및 메탄 잠재발생량 산정)

  • Hong, Sang-Pyo
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.414-422
    • /
    • 2008
  • Methane is a potent greenhouse gas and methane emissions from landfill sites have been linked to global warming. In this study, LandGEM (Landfill Gas Emission Model) was applied to predict landfill gas quantity over time, and then this result was compared with the data surveyed on the site, Cheongju Megalo Landfill. LandGEM allows the input of site-specific values for methane generation rate (k) and potential methane generation capacity $L_o$, but in this study, k value of 0.04/yr and $L_o$ value of $100\;m^3$/ton were considered to be most appropriate for reflecting non-arid temperate region conventional landfilling like Cheongju Megalo Landfill. Relatively high discrepancies between the surveyed data and the predicted data about landfill gas seems to be derived from insufficient compaction of daily soil-cover, inefficient recovery of landfill gas and banning of direct landfilling of food waste in 2005. This study can be used for dissemination of information and increasing awareness about the benefits of recovering and utilizing LFG (landfill gas) and mitigating greenhouse gas emissions.

Analysis of Environmental Factors Affecting on the Reduction Rate of Land Compensation in Urban Development Project (도시개발사업의 토지부담률에 영향을 미치는 환경적 요인분석)

  • Koo, Ja-Kon;Sun, Jong-Geun;Jung, Min-Jung;Hong, Ji-Yeon
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.3-8
    • /
    • 2011
  • This study was carried out for analysing the relationship of environmental factors and the reduction rate of land compensation of six urban development projects near waste landfill sites located in the Seoul metropolitan area. For a close investigation, 24 variables were selected but only 4 environmental variables were identified to have high correlation to the reduction rate of compensation. These are fine particles(PM10), bad smell, the ratio of a greening zone of land and park, and the distance in straight line from the landfill site. Two variables-PM10 and bad smell-were found to have an effect on the average reduction rate of land compensation by correlation analysis. On the other hand, the ratio of a greening zone and the distance in straight line from the landfill site have been rejected for the significance test. The result of regression analysis of six models for the search of affecting variables on the reduction rate of compensation is that PM10 and bad smell have the impact ratio of more than 0.5. But the ratio of greening zone and the distance from the landfill are not significant factors, having the impact ratio of 0.025~0.045 except one model.

Long Term Trend and Stability of Contaminant Sources of Finished Landfill (사용종료 매립장 오염원의 장기 변화 및 안정성)

  • 장연수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.12a
    • /
    • pp.1-40
    • /
    • 1996
  • In order to determine the proper treatment of the finished landfill, it is important to predict the trend and stability of the major sources of contaminant in the landfill. In this paper the fate of contaminant sources in the landfill is studied from various literatures by grouping the contaminants into waste, leachate, and landfill gas. One example site referred is Nanji landfill which is one of the representative finished landfills in our country and the trend of contaminant sources in this landfill at current stage is discussed.

  • PDF

A Study on Soil-Bentonite Mixed Liner Properties for Waste Landfill (폐기물매립지의 흙-벤토나이트 혼합차수층 특성에 관한 연구)

  • 홍성길;한봉수;장연수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.597-604
    • /
    • 2001
  • In this study, the engineering characteristics of soil-bentonite mixed liner are investigated using the laboratory hydraulic conductivity and strength tests. The soil used for the liner is clayey silt in the site and the weathered granitic soil located near the waste landfill studied. Mixing ratio of the bentonite which satisfies the requirement of hydraulic conductivity is determined and the optimum mixing ratio of betonite is recommended for the landfill. After the mixed liner is constructed, the block samples of the constructed liner are obtained and the properties of interest satisfy the requirements of the liner of the landfill.

  • PDF

Utilization of Selected Landfill Waste Soils for Road Embankment Materials (도로성토재료로서 폐기물 매립장 선별토사의 활용)

  • Kim, Young-Su;Jung, Sung-Kwan;Choi, Byung-Hak;Lee, Sang-Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.29-39
    • /
    • 2003
  • The major objectives of this study were to investigate the physical characteristics of selected refuse landfill waste soils which are excepted general waste materials and assessed the possibility of recycling for road construction or embankment materials. The old landfill site which is selected for this study is located at Youngyang in Kyungsangpukdo and it had been dumped and closed for 16-25 years. Therefore, the selected landfill waste soil became to geotechnical engineering characteristics when the closed landfill site is reused for road embankment materials. It was found that it would be better to use the selected waste soil mixed with the ordinary soil.

  • PDF

Spatial distribution of heavy metals in soils and groundwater at the 2000 Olympic Games site, Sydney, Australia

  • Suh, Jeong-Yul
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.70-78
    • /
    • 2004
  • The current study was undertaken to evaluate the hydrogeochemical implications of heavy metals (Cr, Cu, Pb, Zn) in both soils and groundwater in reclaimed lands of Sydney's 2000 Olympic Games site at Homebush Bay in Port Jackson, Sydney. The Olympic Games site can be divided into three areas, i.e. 'reclaimed areas' were previously estuarine, and were filled with waste materials and are now above present high tide level, whereas 'landfill areas' are areas where deposition of waste materials occurred above sea level. No deposition of waste took place in 'non-infilled areas'. 4513 soil core samples and 101 groundwater samples were analyzed for Cr, Cu, Pb, Zn. The mean heavy metal (Cr, Cu, Pb, Zn) concentrations in soils of the study area revealed the order of reclaimed (greatest), landfill and non-infilled area (smallest), whereas in groundwater it is all shown the order of landfill, reclaimed and non-infilled area, except for Pb. Mean Pb concentration in soils derived from the three land types at the Olympic Games site revealed the order of reclaimed area(174 $\mu\textrm{g}$/g), landfill area (102 $\mu\textrm{g}$/g) and non-infilled area (48 $\mu\textrm{g}$/g). Results reveal that soils contaminated by Cr, Cu, Pb and Zn in reclaimed/landfill areas are associated with dumped materials. No relationship could be established between soil and groundwater concentrations of heavy metals (Cr, Cu, Pb, Zn) in the landfill, reclaimed and non-infilled areas of the Olympic site, probably due to the varied nature of the materials deposited at the Olympic site.