Browse > Article
http://dx.doi.org/10.12925/jkocs.2016.33.1.213

Conformity Enhancement of Methane Generation Model for In-Service Landfill Site  

Chun, Seung-Kyu (Graduate School of Energy & Environment, Seoul National University of Science & Technology)
Publication Information
Journal of the Korean Applied Science and Technology / v.33, no.1, 2016 , pp. 213-223 More about this Journal
Abstract
The validity of landfill gas models is an important problem considering that they are frequently used for landfill-site-related policy making and energy recovery planning. In this study, the Monte Carlo method was applied to an landfill gas generation model in order to enhance conformity. Results show that the relative mean deviation between measured data and modeled results (MD) decreased from 19.8% to 11.7% after applying the uncertainty range of Intergovernmental Panel on Climate Change (IPCC) to the methane-generation potential and reaction constants. Additionally, when let reaction constant adjust derived errors from all other modeling components, such as model logic, gauging waste, and measured methane data, MD decreased to 6.6% and the disparity in total methane generation quantity to 2.1%.
Keywords
Landfill site; Landfill gas model; Model conformity; Monte Carlo method;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. Liu, G. Benoit, T. Liu, Y. Liu, H. Guo, An integrated system dynamics model developed for managing lake water quality at the watershed scale, J. Environ. Manag., 155, 12 (2015).
2 J.H. Kim, Y.K. Park, Study on Computational Fluid Dynamics(CFD) simulation for NOx dispersion around combined heat and power plant, J. of Korean Oil Chemists' Soc., 32(1), 63 (2015).
3 A. Haarstrick, N. Mora-Naranjo, J. Meima. and D.C. Hempel, Modeling Anaerobic Degradation in Municipal Landfills, Environ. Eng. Sci., 21, 471 (2004).   DOI
4 S. Li, H.K. Y, K. Macauley, K. Palmer, J.S. Shih, Assessing the role of renewable energy policies in landfill gas to energy projects, Energy Econ., 49, 688-690 (2015).
5 Y.K. Kim, K.H. Lee, H.S. Hahm, Direct Methanol Synthesis by Partial Oxidation of Methane, J. of Korean Oil Chemists' Soc., 30(4), 650 (2013).
6 I. Georgakia, P. Soupiosc, N. Sakkasd et al., Evaluating the use of electrical resistivity imaging technique for improving $CH_4\,and\,CO_2$ emission rate estimations in landfills, Sci. Total Environ., 389(2-3), 523 (2008).
7 H.R. Amini, D.R. Reinhart, K.R. Mackie, Determination of first-order landfill gas modeling parameters and uncertainties, Waste Manag., 32(2), 311 (2012).
8 Y. Chu, C. Salles, F. Cernesson, J.L. Perrin, M.G. Tournoud, Nutrient load modeling during floods in intermittent rivers: An operational approach, Environ. Model. Softw., 23(6), 780 (2008).
9 J. Hofman, R. Samson, Biomagnetic monitoring as a validation tool for local air quality models: A case study for an urban street canyon, Environ. Int., 70, 55-56 (2014).
10 R.L. Meraza, A.M. Vidalesb, A. Dominguez, A fractal-like kinetics equation to calculate landfill methane production, Fuel., 83(1), 75 (2004).
11 T. Abichou, T. Kormi, L. Yuan, T. Johnson, E. Francisco, Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates, Waste Manag., 36, 231 (2015).
12 D.D. Trapani, G.D. Bella, G. Viviani, Uncontrolled methane emissions from a MSW landfill surface: Influence of landfill features and side slopes, Waste Manag., 33(10), 2109-2114 (2013).
13 J.W. Park, H.C. Shin, Surface emission of landfill gas from solid waste landfill, Atmospheric Environ., 35(20), 3447 (2001).
14 C. Pratt, A.S Walcroft, J. Deslippe, K.R. Tate, $CH_4/CO_2$ ratios indicate highly efficient methane oxidation by a pumice landfill cover-soil, Waste Manag., 33(2), 412-413 (2013).   DOI
15 S.K. Chun, A Study on the Uncertainty Analysis of First Order Decay Model for Landfill Gas, J. Korea So. Waste Manag., 27(8), 728 (2010).
16 A.P. Trzcinski and D.C. Stuckey, Determination of the Hydrolysis Constant in the Biochemical Methane Potential Test of Municipal Solid Waste, Environ. Eng. Sci., 29(9), 849 (2012).
17 A.A. Faour, D.R. Reinhart, H. You, First-order kinetic gas generation model parameters for wet landfills, Waste Manag., 27(7), 948-953 (2007).
18 G. De Gioannis, A. Muntoni, G. Cappai, S. Milia, Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants, Waste Manag., 29(3), 1028 (2009).
19 H.D. Kim, T.G. Townsend, Wet landfill decomposition rate determination using methane yield results for excavated waste samples, Waste Manag., 32, 1429-1430 (2012).
20 Z. Mou, C. Scheutz, P. Kjeldsen, Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills, Waste Manag., 34(11), 2254-2255 (2014).
21 N. Sanphotia, S. Towprayoona, P. Chaiprasertc, A. Nopharatanad, The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill, J. Environ. Manag., 81(1), 29 (2006).
22 B.G. Tian, J.T. Si, Y. Zhao, H.T. Wang, J.M. Hao, Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream, J. Environ. Sci., 19(5), 636-637 (2007).
23 R. Smith, M. Lillie, Using a lysimeter study to assess the parameters responsible for oak wood decay from waterlogged burial environments and their implication for the in situ preservation of archaeological remains, Int. Biodeterior. Biodegrad., 60(1), 42 (2007).
24 J.C. Refsgaard, J.P. van der Sluijs, A.L. Hjberg, P.A. Vanrolleghem, Uncertainty in the environmental modelling process - A framework and guidance, Environ. Model. Softw., 22(11), 1546-1547 (2007).
25 J. Billeter, Y.M. Neuhold, L. Simon, G. Puxty, K. Hungerbhler, Uncertainties and error propagation in kinetic hardmodelling of spectroscopic data, Chemom. Intell. Lab. Syst., 93(2), 121-123 (2008).
26 S.S. Nam, J.Y. Lee, A Study on Monte Carlo Simulation by beam scattering in Resin of New Austria Tunnel Method for Safety of Industrial Disaster, J. of Korean Oil Chemists' Soc., 30(3), 445 (2013).
27 S. Shen, S. Zeng, J. Liang et al., Markov Chain Monte Carlo Approach for Parameter Uncertainty Quantification and Its Impact on Groundwater Mass Transport Modeling: Influence of Prior Distribution, Environ. Eng. Sci., 31, 490-491 (2014).
28 Sudokwon Landfill Site Management Corp., A Study on The Monitoring & Prediction System Building Measures for LFG and Leachate of Sudokwon Landfill Site, 210 (2004).
29 Intergovernmental Panel on Climate Change (IPCC), IPCC Guidelines for National Greenhouse Gas Inventories, 3.17 (2007).
30 L. Yu, F. Batllea, J. Carrera, A. Lloret, Gas flow to a vertical gas extraction well in deformable MSW landfills, J. Hazard. Mater., 168(2-3), 1405 (2009).