• Title/Summary/Keyword: waste disposal site

Search Result 246, Processing Time 0.03 seconds

Analysis on the concept design of the nuclear waste disposal site in foreign country (해외 방사성 폐기물 처분장 개념 설계 분석)

  • Seo, Kyoung-Won;Kim, Woong-Ku;Baek, Ki-Hyun;Jun, Seong-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.791-800
    • /
    • 2010
  • This paper presents the construction status and the conceptual designs of midium and high level radioactive waste disposal facilities from all around world. For the midium radioactive waste, a shallow disposal using trench or a deep depth disposal are adopted. However, these are rather focusing on the social and cultural point of view than the technical. Meanwhile, the high level radioactive waste is basically disposed in the deep underground. The corresponding ground conditions are usually dense and composed of sedimentary and crystalline rocks mainly with low permeability. A barrier system is made of canister which consists of copper, titanium, and tin. The inner and outer side of the canister are composed of different materials respectively.

  • PDF

Introduction to Current Status and Researches for Rock Engineering of Finnish Geological Disposal of Spent Fuel (핀란드의 사용후핵연료 지층처분 현황 및 암반공학 관련 연구소개)

  • Hong, Suyeon;Kwon, Saeha;Min, Ki-Bok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.215-229
    • /
    • 2019
  • This technical note describes the current status of Finnish radioactive waste disposal project which started to construct the repository for spent nuclear waste for the first time in the world. Finland started operating nuclear power plant in 1977 and is currently operating four nuclear power plants. After detailed site surveys started in 1993, Olkiluoto was finally selected by the parliament of Finland as the site for geological disposal in 2001 followed by a construction license in 2015. If the operating license is approved by the government in the 2020s, it would be the world's first case of geological disposal. In ONKALO, a site-specific underground research facility at the site of Olkiluoto, various studies were conducted to verify the safety of the repository. Finland uses the KBS-3 disposal concept, and Korea considers a similar disposal concept because of similar rock formations. The entire process in Finland including the operation status of intermediate and low-level waste disposal, site investigation and selection stages, and the latest rock mechanics and hydrogeological studies in ONKALO are presented. Suggestions for the radioactive waste disposal in Korea is given based on the Finnish case.

A Review on Development of Nationwide Map of Scientific Features for Geological Disposal in Japan (일본의 과학적 특성 지도 개발에 대한 고찰)

  • Lee, Jeong-Hwan;Lee, Sang-Jin;Kim, Hyeongjin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.447-457
    • /
    • 2019
  • Japan enacted the "Designated Radioactive Waste Final Disposal Act" for the geological disposal of high-level radioactive waste in 2000 and began the site selection process. However, no local government wanted to participate in the siting process. Therefore, in 2015, the Japanese government developed a new site selection process during the literature survey step, and on June 28, 2017 they published a "Nationwide Map of Scientific Features for Geological Disposal" created with the aim of promoting public participation from local governments. This map illustrated the requirements and criteria to be considered in the early or conceptual stages of securing a geological repository and was useful for improving public understanding and exchanging opinions with local governments by analyzing the suitability of different geological disposal sites.

Analysis of Overseas Data Management Systems for High Level Radioactive Waste Disposal (고준위방사성폐기물 처분 관련 자료 관리 해외사례 분석)

  • MinJeong Kim;SunJu Park;HyeRim Kim;WoonSang Yoon;JungHoon Park;JeongHwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.323-334
    • /
    • 2023
  • The vast volumes of data that are generated during site characterization and associated research for the disposal of high-level radioactive waste require effective data management to properly chronicle and archive this information. The Swedish Nuclear Fuel and Waste Management Company, SKB, established the SICADA database for site selection, evaluation, analysis, and modeling. The German Federal Company for Radioactive Waste Disposal, BGE, established ArbeitsDB, a database and document management system, and the ELO data system to manage data collected according to the Repository Site Selection Act. The U.K. Nuclear Waste Services established the Data Management System to manage any research and survey data pertaining to nuclear waste storage and disposal. The U.S. Department of Energy and Office of Civilian Radioactive Waste Management established the Technical Data Management System for data management and subsequent licensing procedures during site characterization surveys. The presented cases undertaken by these national agencies highlight the importance of data quality management and the scalability of data utilization to ensure effective data management. Korea should also pursue the establishment of both a data management concept for radioactive waste disposal that considers data quality management and scalability from a long-term perspective and an associated data management system.

Very Low Level Radioactive Solid Waste Management in CHINA (중국에서의 극저준위 방사성 고체 폐기물 관리)

  • Li, Tingjun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.87-92
    • /
    • 2011
  • This paper introduces the policy and regulations on very low level waste (VLLW) management in China. Given the important decommissioning and site restoration program of the old facility, it is considered necessary to create a new disposal facility dedicated to VLLW. Many general design principles are in common with to the disposal facility for low and intermediate level waste (LILW), namely the isolation of the waste by means of a multibarrier system, but using bentonite and/or high density polyethylene membranes instead of the generalized use of concrete barriers. The design of the facility is consistent with the design of disposal facilities for hazardous waste. The engineering design of two VLLW disposal facilities is introduced.

A Study far Improvement of Disposal and Collection System of Agricultural PE Waste (농업용 폐비닐의 농가처리 및 수거제도 개선방안)

  • Kang, Chang-Yong
    • Journal of Environmental Policy
    • /
    • v.2 no.1
    • /
    • pp.51-75
    • /
    • 2003
  • The objective of this study is to analyze the problems of disposal and collection, including administrative management of agricultural PE waste and suggest effective management measurements. Information regarding problems of agricultural PE waste management were collected from field survey of farmers, regional governments and officials. On the national level, the low ratio of collection for optimal treatment of agricultural PE waste is a critical problem. , the negative discharging behavior of farmers, an illegal incineration and landfill of farmers and a lack of education and extension etc. An ambiguity of the management principle to agricultural PE waste, the differences in management among the regional governments, a lack of will of the regional governments and officials to realize SARD and lack of education and extension etc. are some of the problems in administrative management of agricultural PE waste collection. The major suggestions of this study are as follows : (1) to strengthen education and extension, (2) to adopt an improved economic incentive system and strong, lawful regulation simultaneously, (3) to use temporang collection and permanent collection site, and (4) to organize "OTC(Optimal Treatment Conference)" composed of farmers, regional cooperative, PE producers etc. for operating an effective management system.

  • PDF

Solid Waste Disposal Site Selection in Rural Area: Youngyang-Gun, Kyungpook (농촌지역 쓰레기 매립장 입지선정에 관한 연구 -경상북도 영양군을 사례로-)

  • Park, Soon-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.1
    • /
    • pp.63-80
    • /
    • 1997
  • This study attempts to establish the criteria of site selection for establishing solid waste disposal facility, to determine optimal solid waste disposal sites with the criteria, and to examine the suitability of the selected sites. The Multi-Criteria Evaluation(MCE) module in Idrisi is used to determine optimal sites for solid waste disposal. The MCE combines the information from several criteria in interval and/or ratio scale to form a single index of evaluation without leveling down the data scale into ordinal scale. The summary of this study is as follows: First, the considerable criteria are selected through reviewing the literature and the availability of data: namely, percent of slope, fault lines, bedrock characteristics, major residential areas, reservoirs of water supply, rivers, inundated area, roads, and tourist resorts. Second, the criteria maps of nine factors have been developed. Each factor map is standardized and multiplies by its weight, and then the results are summed. After all of the factors have been incorporated, the resulting suitability map is multiplied by each of the constraint in turn to "zero out" unsuitable area. The unsuitable areas are discovered in urban district and its adjacencies, and mountain region as well as river, roads, resort area and their adjacency districts. Third, the potential sites for establishing waste disposal facilities are twenty five districts in Youngyang-gun. Five districts are located in Subi-myun Sinam-ri, nine districts in Chunggi-myun Haehwa-ri and Moojin-ri, and eleven districts in Sukbo-myun Posan-ri. The first highest score of suitability for waste disposal sites is shown at number eleven district in Chunggi-myun Moojin-ri and the second highest one is discovered at number twenty one district in Sukbo-myun Posan-ri that is followed by number nine district in Chunggi-myun Haehwa-ri, number seventeen and twenty three in Sukbo-myun Posan-ri, and number two in Subi-myun Sinam-ri. The first lowest score is found in number six district in Chunggi-myun Haehwa-ri, and the second lowest one is number five district in Subi-myun Sinam-ri. Finally, the Geographic Information System (GIS) helps to select optimal sites with more objectively and to minimize conflict in the determination of waste disposal sites. It is important to present several potential sites with objective criteria for establishing waste disposal facilities and to discover characteristics of each potential site as a result of that final sites of waste disposal are determined through considering thought of residents. This study has a limitation of criteria as a result of the restriction of availability of data such as underground water, soil texture and mineralogy, and thought of residents. To improve selection of optimal sites for a waste disposal facility, more wide rage of spatial and non-spatial data base should be constructed.

  • PDF

A Study About Radionuclides Migration Behavior in Terms of Solubility at Gyeongju Low- and Intermediate-Level Radioactive Waste (LILW) Repository

  • Park, Sang June;Byon, Jihyang;Lee, Jun-Yeop;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.113-121
    • /
    • 2021
  • A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.

Preliminary Review on Function, Needs and Approach of Underground Research Laboratory for Deep Geological Disposal of Spent Nuclear Fuel in Korea (사용후핵연료 심층처분을 위한 지하연구시설(URL)의 필요성 및 접근 방안)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Lee, Sang-Jin;Kim, Hyunjoo;Choi, Byong-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.157-178
    • /
    • 2013
  • This study gives a conceptual and basic direction to develop a URL (underground research laboratory) program for establishing the performance and safety of a deep geological disposal system in Korea. The concept of deep geological disposal is one of the preferred methodologies for the final disposal of spent nuclear fuel (SNF). Advanced countries with radioactive waste disposal have developed their own disposal concepts reasonable to their social and environmental conditions and applied to their commercial projects. Deep geological disposal system is a multi-barrier system generally consisting of an engineered barrier and natural barrier. A disposal facility and its host environment can be relied on a necessary containment and isolation over timescales envisaged as several to tens of thousands of years. A disposal system is not allowed in the commercial stage of the disposal program without a validation and demonstration of the performance and safety of the system. All issues confirming performance and safety of a disposal system include investigation, analysis, assessment, design, construction, operation and closure from planning to closure of the deep geological repository. Advanced countries perform RD&D (research, development & demonstration) programs to validate the performance and safety of a disposal system using a URL facility located at the preferred rock area within their own territories. The results and processes from the URL program contribute to construct technical criteria and guidelines for site selection as well as suitability and safety assessment of the final disposal site. Furthermore, the URL program also plays a decisive role in promoting scientific understanding of the deep geological disposal system for stakeholders, such as the public, regulator, and experts.

Development of an Acceptance Criteria Implementation Flow Chart for verifying the Disposal Suitability of Radioactive Waste from Decommissioning of Nuclear Power Plants (원자력발전소 해체 방사성폐기물 처분 적합성 검증을 위한 인수기준 이행 흐름도 개발)

  • Kim, Chang Lak;Lee, Sun Kee;Kim, Heon;Sung, Suk Hyun;Park, Hae Soo;Kong, Chang Sig
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-75
    • /
    • 2021
  • When the decommissioning of South Korea nuclear power plants is promoted in earnest with the permanent shutdown of Kori Unit 1 in 2017, a large amount of various types of radioactive waste will be generated. For minimal generation and safe management of decommissioning waste, the waste should be made by appropriate classification of the dismantling waste characteristics in accordance with physical, chemical and radiological characteristics to meet the acceptance criteria of disposal facilities. Replacing the preliminary inspection at the site for the compliance of the waste acceptance criteria (WAC) of medium and low-level radioactive waste with the generator's own radioactive waste certification program (WCP), from the perspective of disposal, the optimization of waste management at the national level contributes to the efficient availability of disposal, such as the processing of non-conforming radioactive wastes at the site. To this end, it is important to evaluate radioactivity in each system and area such as nuclear reactors before decommissioning is carried out in earnest, and the prior removal of harmful wastes is important. From waste collection to waste disposal, decommissioning waste should be managed at each stage in consideration of the acceptance criteria of disposal facilities to minimize the generation of non-conforming waste.