• Title/Summary/Keyword: waste coffee grounds

Search Result 27, Processing Time 0.022 seconds

Overview for Coffee Grounds Recycling Technology and Future Concerns (커피 추출 폐기물 재활용 현황과 기술 동향 분석)

  • Hong, Hyun Seon;Kim, Yuli;Oh, Min Joo;Lee, Yu Mi;Lee, Hye Ji;Cha, Eun Seo
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.587-599
    • /
    • 2018
  • The coffee grounds generated during the coffee extraction process contain several resources, but the technology for their recycling has not been commercialized yet, causing various environmental problems. Due to the recent increase in coffee consumption worldwide, the amount of coffee grounds produced has been continuously increasing, reaching more than 750 million tons. In Korea, about 120,000 tons of coffee waste are annually generated; however, most of them are landfilled or incinerated. Although there is still a shortage of coffee waste recycling technologies compared to the amount of coffee grounds produced, various recycling approaches are being actuated in many countries including Korea. In this study, the generation of coffee grounds at home and abroad, the status of coffee grounds recycling, and the associated technology development trends were investigated. The coffee grounds recycling has been studied in the fields of energy, adsorbent, construction, agriculture, and bio-foods. Research is most active in the energy and biotechnology areas; in particular, since the oil in the coffee grounds is valuable as a feedstock for biomass energy, the technology related to energy recovery is currently under development worldwide. Removed because confusing and unnecessary.

A Study on Preparation of Adsorbent from Coffee Grounds and Removal of Trichloroethylene in Water Treatment (커피찌꺼기를 이용한 흡착제 제조 및 수중 Trichloroethylene(TCE) 흡착제거에 관한 연구)

  • 이향숙;강주원;양원호;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.20-31
    • /
    • 1998
  • There is a need for waste recycling. This study was carried out to investigate removal efficiency of TCE in water treatment with adsorbent made from coffee grounds which obtained after extraction of coffee through hot water. The removal of TCE in synthetic Waste water using adsorbents was examined varying dose, concentration and temperature on a laboratory scale. The results were as followed 1. As much as 95% TCE remogal was possible with adsorbent made from coffee grounds at an adsorbent dose over 2.5 g/l under the test conditions. 2. The removal rate of TCE was propotional to weight of adsorbent made from coffee grounds (0.025, 0.1, 0.3, 0.5 g). 3. In the effect of temperature, as temperature of wastewater was high, the rate of removal was increased. 4. Iodine number (865 mg/g) of adsorbent made from coffee grounds was not higher than that (1123 mg/g) of adsorbent made from coconut. But, in considering adsorption capacity, Iodine number was inapplicable to adsorbent made from coffee grounds. 5. Generally, Freundlich's equation applies to adsorption in wastewater. In case of TCE, slope (1/n) was 0.83, 1.06 and intercept (k) was 456.18, 405.19 at 150, 300 ppb respectively (average r=0.904, 0.933).

  • PDF

Extraction of Caffeine from Spent Coffee Grounds and Oxidative Degradation of Caffeine (커피 찌꺼기의 카페인 용출 및 산화분해 특성)

  • Shin, MinJeong;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1205-1214
    • /
    • 2018
  • During the past few decades, significant increase in the consumption of coffee has led to rapid increase in the production of coffee waste in South Korea. Spent coffee waste is often treated as a general waste and is directly disposed without the necessary treatment. Spent Coffee Grounds (SCGs) can release several organic contaminants, including caffeine. In this study, leaching tests were conducted for SCGs and oxidative degradation of caffeine were also conducted. The tested SCGs contained approximately 4.4 mg caffeine per gram of coffee waste. Results from the leaching tests show that approximately 90% of the caffeine can be extracted at each step during sequential extraction. Advanced oxidation methods for the degradation of caffeine, such as $UV/H_2O_2$, photo-Fenton reaction, and $UV/O_3$, were tested. UV radiation has a limited effect on the degradation of caffeine. In particular, UV-A and UV-B radiations present in sunlight cause marginal degradation, thereby indicating that natural degradation of caffeine is minimal. However, $O_3$ can cause rapid degradation of caffeine, and the values of pseudo-first order rate constants were found to be ranging from $0.817min^{-1}$ to $1.506min^{-1}$ when the ozone generation rate was $37.1g/m^3$. Additionally, the degradation rate of caffeine is dependent on the wavelength of irradiation.

Characteristics of Desorption and Recycling Capacity for Previously Adsorbed Silver into Waste Coffee Grounds (커피찌꺼기에 흡착된 은 이온의 탈착 및 재생 특성)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.15-21
    • /
    • 2016
  • This experiment was conducted to test desorption and recycling characteristics for silver ion adsorbed into waste coffee grounds by using various desorbing agents such as nitric acid, ethylene diamine triacetic acid (EDTA) and nitrilo triacetic acid (NTA). It is appeared that the highest desorption efficiency for silver ions was obtained as about 97.8 % by 1.0 M of nitric acid solution. Also, in the case of less than 1.0 of the ratio of solid and liquid (S/L) (g/L), silver ions adsorbed onto coffee grounds was desorbed as about 98~100 %, and most of desorption process was completed within 60min. In addition, adsorption capacity of reused waste coffee grounds for silver ions was highly maintained as about 43.9 mg/g until the $2^{nd}$ cycle, as compared with the adsorption capacity with 45.9 mg/g of the adsorption capacity for virgin waste coffee grounds.

Production of Polyhydroxybutyrate from Crude Glycerol and Spent Coffee Grounds Extract by Bacillus cereus Isolated from Sewage Treatment Plant

  • Lee, Gi Na;Choi, So Young;Na, Jonguk;Youn, HaJin;Jang, Yu-Sin
    • KSBB Journal
    • /
    • v.29 no.6
    • /
    • pp.399-404
    • /
    • 2014
  • Production of biodegradable polymer polyhydroxyalkanoates (PHAs) from industrial wastes exhibits several advantages such as recycle of waste and the production of high valuable products. To this end, this study aimed at isolating from the sewage treatment plant a PHA producing bacterium capable of utilizing wastes generated from biodiesel and food industries. A Bacillus cereus strain capable of producing poly(3-hydroxybutyrate) [P(3HB)] was isolated, which was followed by confirmation of P(3HB) accumulation by gas-chromatographic analyses. Then, the effects of nutrient limitation on P(3HB) production by B. cereus was first examined. Cells cultured in a minimal medium under the limitation of nitrogen, potassium and sulfur suggested that nitrogen limitation allows the highest P(3HB) accumulation. Next, production of P(3HB) was examined from both waste of biodiesel production (crude glycerol) and waste from food industry (spent coffee grounds). Cells cultured in nitrogen-limited minimal medium supplemented crude glycerol and waste spent coffee grounds extract accumulated P(3HB) to the contents of 2.4% and 1.0% of DCW. This is the first report demonstrating the capability of B. cereus to produce P(3HB) from waste raw materials such as crude glycerol and spent coffee grounds.

Overview of Coffee Waste and Utilization for Biomass Energy Production in Vietnam

  • Thriveni, Thenepalli;Kim, Minsuk;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.76-83
    • /
    • 2017
  • In this paper, the carbon resources recycling of the overview of coffee waste generation in Vietnam. Since few years, there has been a significant research studies was done in the areas of coffee waste generation areas and also waste water generation from coffee production. The coffee residue (solid) and waste water (liquid) both are caused the underground water contamination and also soil contamination. These residues contain high organic matter and acid content leads to the severe threat to environment. In second stage of coffee production process, the major solid residue was generated. Various solid residues such as spent coffee grounds, defective coffee beans and coffee husks) pose several environmental concerns and specific problems associated with each type of residue. Due to the unlimited usage of coffee, the waste generation is high. At the same time, some researchers have been investigated the spent coffee wastes are the valuable sources for various valuable compounds. Biodiesel or biomass productions from coffee waste residues are the best available utilization method for preventing the landfill problems of coffee waste residues.

Environmental Effect of the Coffee Waste and Anti-Microbial Property of Oyster Shell Waste Treatment

  • Thenepalli, Thriveni;Ramakrishna, Chilakala;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.39-49
    • /
    • 2017
  • Coffee is one of the most popular and consumed beverages in the world, which leads to a high contents of solid residue known as spent coffee grounds (SCG). As is known, coffee beans contain several classes of health related chemicals, including phenolic compounds, melanoidins, diterpenes, xanthines and carotenoids. The waste water coming out of coffee industries has high concentration of organic pollutants and is very harmful for surrounding water bodies, human health and aquatic life if discharged directly into the surface waters. Hence it is essential to treat and manage the coffee waste. Oyster shells are a waste product from mariculture that creates a major disposal problem in coastal regions of southeast Korea. In the study, the oyster shell waste was used to treat the coffee waste and its effluents. Oyster shells are calcined at $1000^{\circ}C$ for 2 h, and allowed to test the calcined CaO powder ability to inhibit the growth of bacteria in different aging coffee wastes. Calcined oyster shell powder showed anti-bacterial effect that inhibited cell growth of Escherichia coli and other bacterial forms. The antimicrobial activity of calcium oxide from oyster shell waste for biological treatment and utilization as a fertilizers with economic ecofriendly in nature.

Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors

  • Park, Min Hong;Yun, Young Soo;Cho, Se Youn;Kim, Na Rae;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.19
    • /
    • pp.66-71
    • /
    • 2016
  • The development of nanostructured functional materials derived from biomass and/or waste is of growing importance for creating sustainable energy-storage systems. In this study, nanoporous carbonaceous materials containing numerous heteroatoms were fabricated from waste coffee grounds using a top-down process via simple heating with KOH. The nanoporous carbon nanosheets exhibited notable material properties such as high specific surface area (1960.1 m2 g−1), numerous redox-active heteroatoms (16.1 at% oxygen, 2.7 at% nitrogen, and 1.6 at% sulfur), and high aspect ratios (>100). These unique properties led to good electrochemical performance as supercapacitor electrodes. A specific capacitance of ~438.5 F g−1 was achieved at a scan rate of 2 mV s−1, and a capacitance of 176 F g−1 was maintained at a fast scan rate of 100 mV s−1. Furthermore, cyclic stability was achieved for over 2000 cycles.

Treatment Features of Ni Wastewater by using Coffee Grounds as the Adsorbent (커피 찌꺼기를 흡착제로 한 니켈 폐수 처리 특성)

  • Seo, Myung-Soon;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.14-20
    • /
    • 2005
  • A feasibility study has been conducted regarding the application of waste coffee grounds as an adsorbent for the treatment of nickel ion containing wastewater. The major variables which considered to influence the adsorbability of nickel ion were its initial concentration, reaction temperature, pH, and coexisting ion. The specific surface area of coffee grounds used in the experiment was found to be ca. $39.67m^2/g$, which suggesting its potential applicability as an adsorbent due to its relatively high surface area. In the experimental conditions, more than 90% of the initial amount of nickel ion was shown to adsorb within 15 minutes and equilibrium in adsorption was attained after 3 hours. The adsorption behavior of nickel ion was well explained by Freundlich model and kinetics study showed that the adsorption reaction was second-order. Adsorption was reduced with temperature and its change of enthalpy in standard state was estimated to be -807.05 kJ/mol. Arrhenius equation was employed for the calculation of the activation energy of adsorption and nickel ion was observed to adsorb on coffee grounds exoentropically based on thermodynamic estimations. As pH rose, the adsorption of nickel ion was diminished presumably due to the formation of cuboidal complex with hydroxide ion and the coexistence of cadmium ion was found to decrease the amount of nickel ion adsorption, which was proportional to the concentration of cadmium ion.

Using Coffee-Derived Hard Carbon as a Cost-Effective and Eco-Friendly Anode Material for Li-Ion Batteries

  • Hong, Sung Joo;Kim, Seong Su;Nam, Seunghoon
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2021
  • Through a simple filtration process, followed by carbonization within a reductive environment, coffee waste grounds can be transformed into a non-porous hard carbon for use in multiple contexts. This resulting coffee-waste carbon has been evaluated as an eco-friendly and cost-effective replacement for conventional graphite. When compared with different types of carbon, our study found that the coffee-waste carbon fell into the category of hard carbon, as verified from the galvanostatic charge/discharge profiles. The coffee-waste carbon showed a superior rate capability when compared to that of graphite, while compromising smaller capacity at low C rates. During electrochemical reactions, it was also found that the coffee-waste carbon is well exposed to electrolytes, and its disordered characteristic is advantageous for ionic transport which leads to the low tortuosity of Li ions. Finally, the high irreversible capacity (low initial Coulombic efficiency) of the coffee-waste carbon, which if also often observed in amorphous carbon, can be adequately resolved through a solution-based prelithiation process, thereby proving that the coffee-waste carbon material is quite suitable for commercial use as an anode material for quickly-chargeable electrodes.