Browse > Article
http://dx.doi.org/10.14773/cst.2021.20.1.15

Using Coffee-Derived Hard Carbon as a Cost-Effective and Eco-Friendly Anode Material for Li-Ion Batteries  

Hong, Sung Joo (Department of Materials Science and Engineering, College of Engineering, Andong National University)
Kim, Seong Su (Department of Materials Science and Engineering, College of Engineering, Andong National University)
Nam, Seunghoon (Department of Materials Science and Engineering, College of Engineering, Andong National University)
Publication Information
Corrosion Science and Technology / v.20, no.1, 2021 , pp. 15-21 More about this Journal
Abstract
Through a simple filtration process, followed by carbonization within a reductive environment, coffee waste grounds can be transformed into a non-porous hard carbon for use in multiple contexts. This resulting coffee-waste carbon has been evaluated as an eco-friendly and cost-effective replacement for conventional graphite. When compared with different types of carbon, our study found that the coffee-waste carbon fell into the category of hard carbon, as verified from the galvanostatic charge/discharge profiles. The coffee-waste carbon showed a superior rate capability when compared to that of graphite, while compromising smaller capacity at low C rates. During electrochemical reactions, it was also found that the coffee-waste carbon is well exposed to electrolytes, and its disordered characteristic is advantageous for ionic transport which leads to the low tortuosity of Li ions. Finally, the high irreversible capacity (low initial Coulombic efficiency) of the coffee-waste carbon, which if also often observed in amorphous carbon, can be adequately resolved through a solution-based prelithiation process, thereby proving that the coffee-waste carbon material is quite suitable for commercial use as an anode material for quickly-chargeable electrodes.
Keywords
Coffee waste; Hard carbon; High-rate anodes; Li-ion batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Wang, F. Li, D. Liu, D. Zheng, Y. Luo, D. Qu, T. Ding, and D. Qu, ACS Appl. Mater. Interfaces, 11, 8699 (2019). https://doi.org/10.1021/acsami.8b19416   DOI
2 J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, and J.-G. Zhang, Nat. Energy, 4, 180 (2019). https://doi.org/10.1038/s41560-019-0338-x   DOI
3 J. Betz, G. Bieker, P. Meister, T. Placke, M. Winter, and R. Schmuch, Adv. Energy Mater., 9, 1803170 (2019). https://doi.org/10.1002/aenm.201803170   DOI
4 Z. Lin, T. Liu, X. Ai, and C. Liang, Nat. Commun., 9, 5262 (2018). https://doi.org/10.1038/s41467-018-07599-8   DOI
5 J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644   DOI
6 M. Armand and J.-M. Tarascon, Nature, 451, 652 (2008). https://doi.org/10.1038/451652a   DOI
7 B. Scrosati and J. Garche, J. Power Sources, 195, 2419 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048   DOI
8 B. Dunn, H. Kamath, and J.-M. Tarascon, Science, 334, 928 (2011). https://doi.org/10.1126/science.1212741   DOI
9 D. Andre, H. Hain, P. Lamp, F. Maglia, and B. Stiaszny, J. Mater. Chem. A, 5, 17174 (2017). https://doi.org/10.1039/C7TA03108D   DOI
10 J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, and D. Bresser, Sustain. Energy Fuels, 4, 5387 (2020). https://doi.org/10.1039/D0SE00175A   DOI
11 J. Billaud, F. Bouville, T. Magrini, C. Villevieille, and A. R. Studart, Nat. Energy, 1, 16097 (2016). https://doi.org/10.1038/nenergy.2016.97   DOI
12 C. Ma, Y. Zhao, J. Li, Y. Song, J. Shi, Q. Guo, and L. Liu, Carbon, 64, 537 (2013). https://doi.org/10.1016/j.carbon.2013.07.089   DOI
13 J. Yue, X. Zhao, and D. Xia, Electrochem. Commun., 18, 44 (2012). https://doi.org/10.1016/j.elecom.2012.02.001   DOI
14 A. Caballero, L. Hernan, and J. Morales, ChemSusChem 4, 658 (2011). https://doi.org/10.1002/cssc.201000398   DOI
15 B. Campbell, R. Ionescu, Z. Favors, C. S. Ozkan, and M. Ozkan, Sci. Rep., 5, 14575 (2015). https://doi.org/10.1038/srep14575   DOI
16 M. C Shin, J. H Kim, S Nam, Y. J Oh, H.-J Jin, C. R Park, Q. Zhang, and S. J Yang, Small, 16, 2003104 (2020). https://doi.org/10.1002/smll.202003104   DOI
17 J. H. Um, Y. Kim, C.-Y. Ahn, J. Kim, Y.-E. Sung, Y.-H. Cho, S.-S. Kim, and W.-S. Yoon, J. Electrochem. Sci. Technol., 9, 163 (2018). https://doi.org/10.5229/JECST.2018.9.3.163   DOI
18 Z. Li, J. Wang, X. Liu, S. Liu, J. Ou, and S. Yang, J, Mater, Chem., 21, 3397 (2011). https://doi.org/10.1039/C0JM02650F   DOI
19 J. Shu, M. Shui, D. Xu, S. Gao, X. Li, Y. Ren, L. Hou, J. Cui, J. Xu, and Z. Zhu, J. Electroanal. Chem., 657, 187 (2011). https://doi.org/10.1016/j.jelechem.2011.03.031   DOI
20 K Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. Shirley Meng, A. van der Ven, V. Srinivasan, R. Kostecki, and G. Ceder, Phys. Chem. Lett., 1, 1176 (2010). https://doi.org/10.1021/jz100188d   DOI
21 Y. Oh, S. Nam, S. Wi, J. Kang, T. Hwang, S. Lee, H. H. Park, J. Cabana, C. Kim, and B. Park, J. Mater. Chem. A 2, 2023 (2014). https://doi.org/10.1039/C3TA14347C   DOI
22 Y. Liu, L.-Z. Fan, and L. Jiao, J. Mater. Chem. A, 5, 1698 (2017). https://doi.org/10.1039/C6TA09961K   DOI
23 K. Krishnamoorthy, M. Veerapandian, K. Yun, and S.-J. Kim, Carbon, 53, 38 (2013). https://doi.org/10.1016/j.carbon.2012.10.013   DOI
24 D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, and G. Yu, Nano Lett., 9, 1752 (2009). https://doi.org/10.1021/nl803279t   DOI
25 C. P. Ewels and M. Glerup, J. Nanosci. Nanotechnol., 5, 1345 (2005). https://doi.org/10.1166/jnn.2005.304   DOI
26 R. J. J. Jansen and H. Vanbekkum, Carbon, 33, 1021 (1995) https://doi.org/10.1016/0008-6223(95)00030-H   DOI
27 W. Xing, and J. R. Dahn, J. Electroanal. Chem., 144, 1195 (1997) https://doi.org/10.1149/1.1837572   DOI
28 Y. Nakayama, F. Soeda, and A. Ishitani, Carbon, 28, 21 (1990). https://doi.org/10.1016/0008-6223(90)90088-G   DOI
29 J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jimenez-Mateos, J. Am. Chem. Soc., 118, 8071 (1996). https://doi.org/10.1021/ja960338m   DOI
30 L. G. Bulusheva, V. Okotrubab, G. Kurenya, H. Zhang, H. Zhang, X. Chen, and H. Song, Carbon, 49, 4013 (2011). https://doi.org/10.1016/j.carbon.2011.05.043   DOI
31 X. Rao, Y. Lou, J. Chen, H. Lu, B. Cheng, W. Wang, H. Fang, H. Li, and S. Zhong, Front. Energy Res., 8 (2020). https://doi.org/10.3389/fenrg.2020.00003   DOI
32 S.Huang, Z. Li, B. Wang, J. Zhang, Z. Peng, R. Qi, J. Wang, and Y. Zhao, Adv. Funct. Mater., 28, 1706294 (2018). https://doi.org/10.1002/adfm.201706294   DOI
33 J. Zhang, H. Zhu, P. Wu, C. Ge, D. Sun, L. Xu, Y. Tang, and Y. Zhou, Nanoscale, 7, 18211 (2015). https://doi.org/10.1039/C5NR05568G   DOI
34 W. Tang, B. M. Goh, M. Y. Hu, C. Wan, B. Tian, X. Deng, and C. Peng, M. Lin, J. Z. Hu, and K. P. Loh, J. Phys. Chem. C, 120, 2600 (2016). https://doi.org/10.1021/acs.jpcc.5b12551   DOI
35 Y. Li, Y. S. Hu, M. M. Titirici, L. Chen, and X. Huang, Adv. Energy Mater., 6, 1600659 (2016). https://doi.org/10.1002/aenm.201600659   DOI
36 E. Buiel and J. R. Dahn, Electrochim. Acta, 45, 121 (1999). https://doi.org/10.1016/S0013-4686(99)00198-X   DOI
37 X. Zhang, H. Qu, W. Ji, D. Zheng, T. Ding, C. Abegglen, D. Qiu, and D. Qu, ACS Appl. Mater. Interfaces, 12, 11589 (2020). https://doi.org/10.1021/acsami.9b21417   DOI
38 J. C. Arrebola, A. Caballero, L. Hernan, J. Morales, M. Olivares-Martin, and V. Gomez- Serrano, J. Electrochem. Soc., 157, A791 (2010). https://doi.org/10.1149/1.3425728   DOI
39 J. Li, Q, Guo, J. Shi, X. Gao, Z. Feng, and Z. Fan, Carbon, 50, 2045 (2012). https://doi.org/10.1016/j.carbon.2011.12.004   DOI