• Title/Summary/Keyword: waste air

Search Result 986, Processing Time 0.028 seconds

Estimation of Characteristics Treatment for Food Waste with Blast Volume and Preheating of Air using Bio-Drying Process (Bio-drying 공법 활용 공기 투입 및 예열에 따른 음식물류 폐기물 분해 특성 평가)

  • Park, Seyong;Lee, Wonbea
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.15-25
    • /
    • 2022
  • In this study, the efficiency of treatment of moisture and organic matter in food waste was analyzed according to the air blast volume and preheating using the bio-drying method. Te mount of air blast volume and preheating were determined by the evaluation of temperature and CO2 during food waste treatment using the bio-drying method. As a results, the increase in the air blast volume increased the moisture removal efficiency and removal rate, but, lowered the temperature inside the bio-drying by the decease in microbial activity. In order to maintain the activity of microorganisms, it was estimated that it was necessary to inject an appropriate air blast rate according th the properties of the food waste. In this study, the injection of air blast volume at 15L/min was optimal. It was evaluated that the organic matter and water removal rates according to the presence or absence of air preheating, the organic matter removal rate and water removal rate increased by 3-5% when air preheating was not performed. Also, there was no internal aggregation caused by the generation of condensate inside the bio-drying. Therefore, for effective bio-drying of food waste, it is necessary to maintain an appropriate air blast volume to maintain microbial activity, and it is considered that injection through preheating of air is required.

Study on Recycling of Air filter PET/PP mixed Plastics from Automobiles (자동차(自動車) Air Filter PET/PP 혼합(混合) 폐(廢)플라스틱의 재활용(再活用)에 관(關)한 연구(硏究))

  • Ahn, Tae-Kwang;Kim, Hea-Tae
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.21-28
    • /
    • 2008
  • Using the post-consumer waste and edge scrap mixed PET with small amount PP air filter elements of automobiles. It was studied that these mixed waste plastics of the various types of the PET were practicable for the material recycling. Various waste PET/PP plastics were collected, crushed, dried in vacuum, and extruded to recycled PET/PP chips. These chips were mixed with three kinds compatibilizers, EVA, MBS, and recycled PVB of the ratio of $3{\sim}10wt.%$ for the purpose of the compatibility for the post-consumer waste and edge scrap. We investigated mechanical and thermal properties of PET/PP mixtures which were compound with the weight ratio of compatibilizers. Compatibilizer, MBS application was showed the most excellent mechanical properties in the range of the $3{\sim}5wt.%$ EVA application was displayed good impact strength and thermal property in the range of $3{\sim}5wt.%$ Last, recycled PVB application was showed poor mechanical properties in the whole range ratio of the PVB.

A Study on Environmental Impact Assessment and Improvement Measures Around Construction Waste Intermediate Processing Sites in Rural Areas (농촌지역의 건설폐기물 중간처리 사업장 주변 환경 영향 평가 및 개선방안 연구)

  • Jang, Kyong-Pil;Kim, Byung-Yun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.26 no.2
    • /
    • pp.65-72
    • /
    • 2024
  • In order to analyze the impact of fine dust generated from a construction waste intermediate processing site on the surrounding areas, diverse types of samples were collected from inside the site and surrounding areas. The impact analysis results of samples are as follows. (1) Compared to the air quality management standards by the Ministry of Environment, the concentration of fine dust within the site was 30 to 46% for PM10 and 14 to 42% for PM2.5, which was not much different from the general air quality level. (2) It was found that PM10 within the site may have a partial effect on the air quality, but when the blocking facilities in the site, wheel washing facilities at vehicle entry and exit route, and sprinkler during working were maintained, the impact on the nearby area was not high. (3) In the case of PM2.5, its concentration was influenced more by the exhaust fumes from work vehicles than fine dust generated during construction waste processing. Since the PM2.5 concentrations in the site and surrounding area were not much different from the general air quality, there was little correlation with the work impact of construction waste intermediate processing sites. (4) Pb, an indicator of heavy metal components, was within 50ng/m3 in all three sites, which was 10% of the domestic management standard and equivalent to the general air quality level. The complaints from residents in nearby areas were filed using indicators based on visual and experiential information in their daily lives, so even if the survey results of environmental impact by the construction intermediate waste processing site are lower than the standard, nearby residents can feel it better than such numerical information. Therefore, specific activities to reduce find dusts should be continuously continued.

Semi-pilot Scaled Hybrid Process Treatment of Malodorous Waste Air: Performance of Hybrid System Composed of Biofilter Packed with Media Inoculated with Thiobacillus sp. IW and Return-sludge and Photocatalytic Reactor (악취폐가스의 세미파일럿 규모 하이브리드 공정 처리: Thiobacillus sp. IW 및 반송슬러지를 접종한 담체를 충전한 바이오필터와 광촉매반응기로 구성된 하이브리드시스템의 운전)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.191-198
    • /
    • 2014
  • A semi-pilot hybrid system composed of a photocatalytic reactor and a biofilter was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by a biofilter system, its performance of ammonia removal was much more poor than that by a biofilter system treating waste air containing only ammonia, unlike its performance of hydrogen sulfide removal. For semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia turned out to be ca. 83 and 65%, respectively. Therefore, for semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia was increased by ca. 4 and 30%, respectively, compared to those of semi-pilot biofilter system (control). In addition, the maximum elimination capacities of hydrogen sulfide and ammonia for semi-pilot hybrid system turned out to be ca. 60 and $37g/m^3/h$, respectively. These maximum elimination capacities of hydrogen sulfide and ammonia were estimated to be ca. 9.1% and ca. 23.3% greater than those for semi-pilot biofilter system (control), respectively. Therefore, the semi-pilot hybrid system contributed the enhancement of removal efficiency and the maximum elimination capacity of ammonia in a higher degree than that of hydrogen sulfide, compared to the semi-pilot biofilter system.

Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 1. Performance of Biofilter Packed with Media with Immobilized Thiobacillus sp. IW and Return-sludge (황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 1. Thiobacillus sp. IW 및 반송슬러지를 고정한 담체를 충전한 바이오필터 운전)

  • Lee, Eun Ju;Park, Hyeri;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.568-574
    • /
    • 2013
  • A semi-pilot biofilter packed with media with immobilized Thiobacillus sp. IW and return sludge, was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). At the incipient and middle stages of a semi-pilot biofilter operation, the hydrogen sulfide-removal efficiency behaves regardless of an inlet-load of ammonia. However, the ammonia-removal efficiency decreased as an inlet-load of hydrogen sulfide increased. Nevertheless, at the final stage of the semi-pilot biofilter operation, the ammonia-removal efficiency was not affected by the increase of hydrogen sulfide-inlet load. It is attributed to that a serious acidification of semi-pilot biofilter-media did not occur due to continuous injection of buffer solution at the final stage of the semi-pilot biofilter operation. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter, the maximum elimination capacities of hydrogen sulfide and ammonia turned out to be ca. 58 and $30g/m^3/h$, respectively. These maximum elimination capacities were estimated to be ca. 39 and 46% less than those for lab-scaled biofilter-separate elimination of hydrogen sulfide and ammonia, respectively. Thus, for the simultaneous biofilter-treatment of hydrogen sulfide and ammonia, the maximum elimination capacity of ammonia decreased by 7% more than that of hydrogen sulfide.

Studies of concrete utilization of waste sludge by-producted in aggregate mines (석산골재광산에서 발생한 잔토의 콘크리트 유효이용에 대한 연구)

  • 엄태선;백상현;백원준;김창수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.7-12
    • /
    • 1998
  • The waste sludge is by-produced about 20-30% of total production and arised to the severe problems of this mine's surrounding environmnet. This study was invested the composition of component, particle of size of the waste sludge by Chemical Analysis, X, R, D, Particle Size Analyzer and the physical properties (air content, slump, strength, etc) of concrete when the waste sludge is added into concrete. so, It's recomended the proper content of the waste sludge to be added into concrete. and then, is verified to be applied at batch plant in field. Above the results, the recomeded content of the waste sludge is about 2-4% (about 4-8% in cement) in aggregates and when it's added the recomended content, they are detected to be more or less changed the physical properties of concrete, ( equally strength and durability, little less air con tent, little increased shinkage, etc). but the application of the recomended content don't arise the problem of the basic quality control of concrete and physical properties.

  • PDF

Developments of the Recycling Treatment Methods of Car Air Filter and Paper Making of Corrugating Medium for Packaging (자동차용 에어필터의 재생 처리법 개발 및 포장원지 제조)

  • Jo, Jung-Yeon;Shin, Jun-Seop
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2005
  • This study was carried out for effective utilization of recycling resources to investigate the repulping conditions of car air filter waste paper and to evaluate the application into corrugating medium papermaking by blending these repulped pulps. Car air filter waste paper was made of virgin BKP and it was dipped into phenol resin solution. It was well disintegrated by laboratory Valley beater with 10%(basis on oven-dried pulp weight) NaOH addition and defoamer usage. The optimal temperature, beating consistency and treatment time were mainly $40^{\circ}C$, 1% and $30{\sim}40$ minutes, respectively. Handsheets were prepared with various blending ratios between air filter recycled pulp and KOCC. In the case of $10{\sim}20%$ substitution with air filter recycled pulp, physical properties reductions as compressive strength and burst strength of sheets were lower than others. These results showed more favour than the partial substitution of KOCC for corrugating medium even though some strength reduction of paper. It was also observed that the waste water of air filter recycling was not affective to environmental problems.

  • PDF

Polymer Waste Incineration by Oxygen Enriched Combustion (사업장폐기물의 순산소 소각기술)

  • Han, In-Ho;Choi, Kwang-Ho;Choung, Jin-Woo
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.132-139
    • /
    • 2000
  • Oxygen enriched incineration can increase the incineration capacity for wastes and dramatically reduce air pollutant emissions such as CO and dioxine by the allowing complete combustion of wastes in incinerator. Furthermore, this technology is proven to have many benefits including an energy-saving, cost-effective, and versatile application for diverse wastes compared with the conventional air incineration technology. The reduced pollutant emissions in flue gas and higher incineration efficiency are also available when the oxygen enriched air is used for the high temperature incineration systems. On the basis of the experimental results the oxygen enrichment system is successfully applied to the rotary kiln incinerator for industrial wastes. The oxygen enriched incineration system could be allowed more compact design of incinerator and flue gas treatment system due to both increasing incineration capacity and reducing flue gas volume. Therefore, oxygen enriched incineration technology is becoming highlighted in the waste incinerator which strongly require more stable efficiency and environmentally friendly and safe operationPut Abstract text here.

  • PDF

Treatment of ASR from End-of-Life Vehicles by Air and Gravimetric Separation (廢自動車 ASR의 風力 및 比中選別에 의한 處理 硏究)

  • Lee, Hwa-Young;Oh, Jong-Kee
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.3-9
    • /
    • 2005
  • A study on the air and gravity separation has been performed for the removal of chlorine containing materials from ASR of end-of-life vehicles. The gravity separation was also conducted on waste plastics collected from ASR. In this work, ASR were previously shredded to pass through 8 mm sieve prior to separation tests and the gravity separation of waste plastics was conducted for three different particle sizes. The two-stage air classification was conducted with the range of air flow rate of 9~20 M$^3$/hr at first stage and 25~34 M$^3$/hr at second stage, respectively. The fraction of overflow product was remarkably increased in the 2nd stage air classification because of high air flow rate while that of underflow product obtained from 1st stage air classification was found to be 62~66%. From the results of gravity separation on waste plastics, it was also found that the amount of the float product was much greater than sink product. It is believed that the gravity separation may be used very efficiently for the removal of calorine bearing materials from waste plastics.

A Study on the Performance Characteristics of a Heat Pump System using Stack Wast Heat in Fuel Cell Vehicles (스택 폐열을 이용한 연료전지 자동차용 열펌프 시스템의 성능 특성에 관한 연구)

  • Jeon, Byungyong;Ko, Wonbin;Park, Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.325-330
    • /
    • 2016
  • This study was conducted to develop a heating system for a fuel cell-driven electric vehicle. The system consists of a compressor, an expansion device and three heat exchangers. A conventional air source heat exchanger is used as primary heat exchanger of the system, and an additional water source heat exchanger is used as a pre-heater to supply heat to the upstream air of the primary heat exchanger. On the other hand, the third heat exchanger consists of a water-to-refrigerant heat exchanger. The heat source of the pre-heater and the water-refrigerant heat exchanger is the waste heat from the fuel cell's stack. In the experiment, the indoor and the outdoor air temperature were fixed, and the compressor speed, EEV opening and waste heat temperature were varied. The results indicate that the $COP_h$ of the proposed system is 3.01 when the system is operating at a 1,200 rpm compressor speed, 50% EEV opening, and $50^{\circ}C$ waste heat source temperature in air pre-heater operation. However, when the system uses a water-refrigerant heat exchanger, the $COP_h$ increases to up to 9.42 at the same compressor speed and waste heat source temperature with 75% EEV openings.