DOI QR코드

DOI QR Code

Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 1. Performance of Biofilter Packed with Media with Immobilized Thiobacillus sp. IW and Return-sludge

황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 1. Thiobacillus sp. IW 및 반송슬러지를 고정한 담체를 충전한 바이오필터 운전

  • Lee, Eun Ju (Department of Chemical Engineering, Research Institute for Industrial and Environmental Waste Air Treament, Daegu University) ;
  • Park, Hyeri (Department of Chemical Engineering, Research Institute for Industrial and Environmental Waste Air Treament, Daegu University) ;
  • Lim, Kwang-Hee (Department of Chemical Engineering, Research Institute for Industrial and Environmental Waste Air Treament, Daegu University)
  • 이은주 (대구대학교 화학공학과, 산업 및 환경폐가스연구소) ;
  • 박혜리 (대구대학교 화학공학과, 산업 및 환경폐가스연구소) ;
  • 임광희 (대구대학교 화학공학과, 산업 및 환경폐가스연구소)
  • Received : 2013.08.04
  • Accepted : 2013.09.06
  • Published : 2013.10.01

Abstract

A semi-pilot biofilter packed with media with immobilized Thiobacillus sp. IW and return sludge, was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). At the incipient and middle stages of a semi-pilot biofilter operation, the hydrogen sulfide-removal efficiency behaves regardless of an inlet-load of ammonia. However, the ammonia-removal efficiency decreased as an inlet-load of hydrogen sulfide increased. Nevertheless, at the final stage of the semi-pilot biofilter operation, the ammonia-removal efficiency was not affected by the increase of hydrogen sulfide-inlet load. It is attributed to that a serious acidification of semi-pilot biofilter-media did not occur due to continuous injection of buffer solution at the final stage of the semi-pilot biofilter operation. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter, the maximum elimination capacities of hydrogen sulfide and ammonia turned out to be ca. 58 and $30g/m^3/h$, respectively. These maximum elimination capacities were estimated to be ca. 39 and 46% less than those for lab-scaled biofilter-separate elimination of hydrogen sulfide and ammonia, respectively. Thus, for the simultaneous biofilter-treatment of hydrogen sulfide and ammonia, the maximum elimination capacity of ammonia decreased by 7% more than that of hydrogen sulfide.

퇴비공장 또는 공공시설에서 발생되는 악취폐가스의 대표적인 제거대상 오염원인 황화수소와 암모니아를 포함한 악취폐가스를 처리하기 위하여 여러 운전 조건 하에서의 Thiobacillus sp. IW 및 반송슬러지를 고정한 담체를 충전한 semi-pilot 바이오필터 시스템을 운전하였다. Semi-pilot 바이오필터 운전 초반 및 중반에서는 황화수소 제거효율은 암모니아 부하와 무관하였으나, 암모니아 제거효율은 황화수소 부하가 커짐에 따라서 감소하였다. 그럼에도 불구하고 semi-pilot 바이오필터 운전 후반에서는 황화수소 부하가 커짐에도 불구하고 암모니아 제거효율이 영향을 받지 않았다. 이것은 semi-pilot 바이오필터 운전 후반의 buffer solution의 지속적 투입으로 인하여 semi-pilot 바이오필터담체의 산성화가 크지 않음에 기인한다고 간주된다. Semi-pilot 바이오필터시스템으로 황화수소와 암모니아의 동시제거를 할 때에 황화수소와 암모니아의 최대 elimination capacity 값은 각각 약 58 및 $30g/m^3/h$이었다. 이와 같이 semi-pilot 바이오필터 운전에 의하여 황화수소와 암모니아를 동시 제거한 경우에는 실험실규모 바이오필터의 유사한 운전조건 하에서 둘 중의 하나만을 함유한 경우보다 제거용량이 각각 약 39와 46% 만큼 감소하여서, 황화수소와 암모니아를 동시 제거한 경우에 암모니아 최대제거용량이 황화수소 최대제거용량보다 7% 만큼 더 감소하였다.

Keywords

References

  1. Hirai, M., Ohtake, M. and Shoda, M., "Removal Kinetics of Hydrogen Sulfide, Methanethiol and Dimethyl Sulfide by Peat Biofilters," J. Ferment. Bioeng., 70, 334-339(1990). https://doi.org/10.1016/0922-338X(90)90145-M
  2. Chris, E., Chris, Q., Peter, B., Jay, W. and Dirk, A., "Odor and Air Emissions Control Using Biotechnology for Both Collection and Wastewater Treatment Systems," Chem. Eng. J., 113, 93-104 (2005). https://doi.org/10.1016/j.cej.2005.04.007
  3. Islander, R. I., Devinny, J. S., Mansfield, F., Postyn, A. and Shin, H., "Microbial Ecology of Crown Corrosions in Sewers," J. Environ. Eng. 117, 751-770(1990).
  4. Oyarzun, P., Arancibia, F., Canales, C. and Aroca, G. E., "Biofiltration of High Concentration of Hydrogen Sulfide Using Thiobacillus thioparus," Process Biochem., 39(2), 165-170(2003). https://doi.org/10.1016/S0032-9592(03)00050-5
  5. Cho, K.-S., Ryu, H. W. and Lee, N. Y., "Biological Deodorization of Hydrogen Sulfide Using Porous Lava as a Carrier of Thiobacillus thioxidants," J. Biosci. Bioeng., 90, 25-31(2000). https://doi.org/10.1016/S1389-1723(00)80029-8
  6. Wani, A. H., Branion, M. R. and Lau, A. K., "Effects of Periods of Starvation and Fluctuating Hydrogen Sulfide Concentration on Biofilter Dynamics and Performance," J. Hazard. Mater., 60, 287-303(1998). https://doi.org/10.1016/S0304-3894(98)00154-X
  7. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Biodegradation of Hydrogen Sulfide by a Laboratory-scale Immobilized Pseudomonas putida CH11 Biofilter," Biotechnol. Prog., 12, 773-778(1996a). https://doi.org/10.1021/bp960058a
  8. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Operation Optimization of Thiobacillus thioparus CH11 in a Biofilter for Hydrogen Sulfide Removal," J. Biotechnol., 52, 31-38(1996b). https://doi.org/10.1016/S0168-1656(96)01622-7
  9. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Biological Elimination of $H_2S$ and $NH_3$ from Wastegases by Biofilter Packed with Immobilized Heterotrophic Bacteria," Chemosphere, 43, 1043-1050(2001). https://doi.org/10.1016/S0045-6535(00)00211-3
  10. Cox, H. H. J. and Deshusses, M. A., "Co-treatment of $H_2S$ and Toluene in a Biotrickling Filter," Chem. Eng. J., 87, 101-110(2002). https://doi.org/10.1016/S1385-8947(01)00222-4
  11. Shareefdeen, Z., Herner, B., Webb, D., Verhaeghe, L. and Wilson, S., "An Odor Predictive Model for Rendering Applications," Chem. Eng. J., 113, 215-220(2005). https://doi.org/10.1016/j.cej.2005.03.006
  12. Hirai, M., Kamamoto, M., Yani, M. and Shoda, M., "Comparison of the Biological $H_2S$ Removal Characteristics Among Four Inorganic Packing Materials," J. Biosci. Bioeng., 91, 396-402(2001). https://doi.org/10.1016/S1389-1723(01)80158-4
  13. Elias, A., Barona, A., Arreguy, A., Rios, J., Aranguiz, I. and Penas, J., "Evaluation of a Packing Material for the Biodegradation of $H_2S$ and Product Analysis," Process Biochem., 37, 813-820(2002). https://doi.org/10.1016/S0032-9592(01)00287-4
  14. Lim, K.-H. and Park, S.-W., "Transient Behavior of Biofilter Inoculated with Thiobacillus sp. IW to Treat Waste-air Containing Hydrogen Sulfide," Korean J. Chem. Eng., 23(6), 965-971(2006). https://doi.org/10.1007/s11814-006-0016-0
  15. Lim, D. J. and Lim, K.-H., "Characteristics on the Incubation of Sulfur Compound-oxidizing Strains Separated for the Removal of Malodor," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 47(6), 788-794(2009).
  16. Kaneko, M., Gokan, G., Katakura, N., Takei, Y. and Hoshino, M., "Artificial Photochemical Nitrogen Cycle to Produce Nitrogen and Hydrogen from Ammonia by Platinized $TiO_2$ and its Application to a Photofuel Cell," Chem. Commun., 1625-1627(2005).
  17. Jester, R. C. and Malone, G. W., "Respiratory Health on the Poultry Farm," National Ag Safety Database (NASD), http://www.cdc.gov/nasd/docs/d000101-d000200/d000146/d000146.html.
  18. Lee, E. J., Park, S. W., Nam, D. V., Chung, C. H. and Lim, K-. H., "Treatment of Malodorous Waste Air Containing Ammonia Using Biofilter System," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 48(3), 391-396(2010).
  19. Lee, E. J. and Lim, K.-H., "Treatment of Malodorous Waste Air Containing Ammonia Using Hybrid System Composed of Photocatalytic Reactor and Biofilter System," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 51(2), 272-278(2013). https://doi.org/10.9713/kcer.2013.51.2.272
  20. Lee, E. J. and Lim, K.-H., "Treatment of Malodorous Waste Air Using Hybrid System," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 48(3), 382-390(2010).
  21. Chen, Y.-X., Yin, J. and Wang, K.-X., "Long-term Operation of Biofilters for Biological Removal of Ammonia," Chemosphere, 58, 1023-1030(2005). https://doi.org/10.1016/j.chemosphere.2004.09.052
  22. Jiang, X. and Tay, J. H., "Operational Characteristics of Efficient co-removal of $H_2S$ and $NH_3$ in a Horizontal Biotrickling Filter Using Exhausted Carbon," J. Hazard. Mater., 176, 638-643 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.079
  23. Chung, Y.-C., Lin, Y.-Y. and Tseng, C.-P., "Removal of High Concentration of $NH_3$ and Coexistent $H_2S$ by Biological Activated Carbon (BAC) Biotrickling Filter," Bioresour. Technol., 96, 1812-1820(2005). https://doi.org/10.1016/j.biortech.2005.01.003
  24. Galera, M. M., Cho, E., Tuuguu, E., Park, S.-J., Lee, C. and Chung, W.-T., "Effects of Pollutant Concentration Ratio on the Simultaneous Removal of $NH_3$, $H_2S$ and Toluene Gases Using Rock Wool-compost Biofilter," J. Hazard. Mater., 152, 624-631(2008). https://doi.org/10.1016/j.jhazmat.2007.07.025
  25. Lim, K-. H., Jung, Y-.J., Park, L. S. and Min, K-. S., "Preparation and Characteristics of Media from Waste Tire Powder for Wastewater Treatment," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 39(5), 600-606(2001).

Cited by

  1. Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 2. Performance of Biofilter Packed with Media Inoculated with a Consortium of Separated Microbes vol.52, pp.2, 2014, https://doi.org/10.9713/kcer.2014.52.2.240