• 제목/요약/키워드: wall-frame

Search Result 556, Processing Time 0.024 seconds

Analyses of Characteristics of the Wall Materials of Existing Earthen Houses (현존 흙집 벽체 재료의 특성 분석(농지조성 및 농어촌정비))

  • 리신호;송창섭;오무영
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.84-89
    • /
    • 2000
  • This study has been done to investigate the characteristics of the wall materials of a earthen house ; the core-wall of wood-frame house and the mud-wall of a all wall house. A series of tests was carried out to study the physical and mechanical properties of wall materials which were picked from existing earthen houses. The core-wall materials were composited sandy soil or clayey soil with low plasticity. The mud-wall materials were sandy soil with well compaction effect. It was confirmed that the wall materials were not always using the loess(called Hwang'o) but using the common soils which wee easily picked from the residential quarter.

  • PDF

The Nonlinear Behavior Characteristics of the 3D Mixed Building Structures with Variations in the Lower Stories (입체 복합구조물의 하부골조 층수 변화에 따른 비선형 거동특성)

  • 강병두;전대한;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • The upper wall-lower frame structures(mixed building structures) are usually composed of shear wall structure in the upper part of structure which is used as residential space and frame structure in the lower part of structure which is used as commercial space centering around the transfer system in the lower part of structure. These structures are characteristics of stiffness irregularity, mass irregularity, and vertical geometric irregularity. The purpose of this study is to investigate the nonlinear response characteristics and the seismic capacity of mixed building structures when the number of stories in the lower frame is varied. The conclusions of this study are following. 1) As the result of push-over analysis of structure such as roof drift(i.e. roof displacement/structural height) and base shear coefficient, when the stories of lower frame system are increased, base shear coefficient is decreased, but roof drift is increased. 2) According to an increase in stories of the lower fame, story drift and ductility ratio of upper wall system are decreased and behavior of upper wall system is closed to elastic. 3) When the stories of lower frame system are increased, the excessive story drift is concentrated on the lower frame system.

An Experimental Study on the Influence of Masonry InFilled Walls on the Seismic Performance of Reinforced Concrete Frames with Non-seismic Details (정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가)

  • Kim, Kyoung-Min;Choen, Ju-Hyun;Baek, Eun-Rim;Oh, Sang-Hoon;Hwang, Cheol-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.114-120
    • /
    • 2017
  • In this paper, the effect of the masonry infill walls on the seismic performance of the reinforced concrete(RC) frames with non-seismic details was evaluated through the static test of an masonry infilled RC frame sub-assemblage with non-seismic details of real size, and comparison with the test results of the RC frame sub-assemblage with non-seismic details. As the test results, lots of cracks occurred on the surface of the entire frame due to the compression of the masonry infilled wall, and the beam-column joint finally collapsed with the expansion of the shear crack and buckling(exposure) of the reinforcement. On the other hand, the stiffness of the shear force-story drift relationship decreased due to the wall sliding crack and column flexural cracks, and the strength finally decreased by around 60% of the maximum strength. The damage that concentrated on the upper and lower parts of columns was dispersed in the entire frame such as columns, a beam, and beam-column joints due to the wall, and the specimen was finally collapsed by expansion of the shear crack of the joint, not the shear crack of the column. Also, the stiffness of RC frame increased by 12.42 times and the yield strength by 3.63 times, while the story drift at maximum strength decreased by 0.18 times.

Modified Proposal for Optimal Location of Offset Outrigger System in High-rise Building (초고층 오프셋 아웃리거 구조의 최적 위치에 대한 수정제안)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.37-44
    • /
    • 2020
  • This research aimed to propose the more proper equation than the leading and existing equations to predict the optimum location of offset outrigger. In this study, a 79 existing models of offset outrigger system were examined. And the key factors in the existing offset outrigger models were the stiffness of shear wall and offset outrigger system, the stiffness of exterior column connected in offset outrigger, the frame stiffness, the ratios of lateral stiffness of frame in shear wall-frame structures, and all that. This paper proposed the modified equation of predicting the optimal location of offset outrigger system. Additionally, the findings of this study provided the important structure engineering materials of the optimal offset outrigger position in tall building.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

Structural Performance Evaluation of Reinforced Concrete Frame and Shear Wall with Various Hoop Ratios of Boundary Column (철근콘크리트 프레임 및 전단벽체의 경계기둥 띠철근비 변화에 따른 구조성능 평가)

  • 신종학;하기주;전찬목
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.303-311
    • /
    • 1998
  • Ten reinforced concrete rigid frames and infilled shear wall frames were tested under both vertical and cyclic loadings. Experiments were carried out to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeledin one-third scale size. Based on the test results reported in this study, the follwing conclusions can be made. For the rigid frame type and the fully rigid babel type shear wall specimens, the hysteresis diagrams indicate that the degradations of their strength were developed slowly beyond maximum carrying capacity. It was shown that when the hoop reinforcement ratio became higher, the energy dissipation capacity became larger and the failure mode became ductile. The specimens designed by the less hoop reinforcement for the fully rigid babel type shear wall, were mainly failed due to diagonal crack in comparison with the specimens designed by the larger hoop reinforcement ratio. Maximum horizontal resisting moment capacity of speciment designed by the fully rigid babel shear wall were increased by 5.47~7.95 times in comparison with the rigid frame type.

Finite Element Analysis of Reinforced Concrete Masonry Infilled Frames with Different Masonry Wall Thickness Subjected to In-plane Loading (채움벽 두께에 따른 철근콘크리트 조적채움벽 골조의 면내하중에 대한 유한요소해석)

  • Kim, Chungman;Yu, Eunjong;Kim, Minjae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • In this study, finite element analyses of masonry infilled frames using a general purpose FE program, ABAQUS, were conducted. Analysis models consisted of the bare frame, infilled frames with masonry wall thickness of 0.5B and 1.0B, respectively. The masonry walls were constructed using the concrete bricks which were generally used in Korea as infilled wall. The material properties of frames and masonry for the analysis were obtained from material tests. However, four times increased the tensile strength was used for 1.0B wall, which is seemingly due to the differences in locating the bricks. The force-displacement relation and development of crack from the FE analysis were very similar to those from the experiments. From the FEA results, contact force between the frame and masonry, distribution of shear force and bending moments in frame members were analyzed. Obtained contact stress shows a trianglur distribution, and the contact length for 0.5B speciment and 1.0B specimen were close to the value estimated using ASCE 41-06 equation and ASCE 41-13 equation, respectively. Obtained shear force and bending moment distribution seems to replicate actual behavior which originates from the contact stress and gap between the frame and masonry.

A study on the characteristic and designing condition of Curtain wall (Curtain Wall의 특성 및 설계조건에 관한 연구)

  • Jeong, Eul-Gyu;Im, Chil-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.125-131
    • /
    • 2004
  • Nowadays, it seems we are in the high time of construction design because development of construction technology widen the option of construction exterior closing materials and deepen the high-tech construction method with all various materials. When we see the flow of construction market, the mainstream is the high-rise intelligent building, which makes the best use of the small midtown area efficently. Therefore, Alum curtain wall is becoming the main material of exterior construction, the concept of which is changing from just a simple window frame to an outer wall which has comprehensive function and capability. As we think of the importance of Curtain wall as a comprehensive outer wall, We should do thorough technical examination and verification at the stage of construction design and plan of carrying out construction.

A Study on the Condensation Performance of Curtain-wall Window in High-Rise Residential Building (초고층 주거건물 커튼월의 창호부 결로 성능평가에 관한 연구)

  • Seok Ho-Tae;Chung Man-Seok;Kwak Hyun-Chul;Kwon Jong-Wook
    • Journal of the Korean housing association
    • /
    • v.16 no.4
    • /
    • pp.81-89
    • /
    • 2005
  • The purpose of this thesis is thermal performance simulation about various type that can apply in the high-rise residential building to estimate condensation performance of window that is consisted of frame and glazing in curtain wall. The result of this thesis are summarized as follows. First, condensation occurrence point when relative humidity is $30{\cdot}40{\cdot}50\%$ is shortest Low-e double glass. Difference by type of gas and spacer was a little by $2{\~}6$ cm, among it, the case that apply krypton in gas and the case that apply double seal in spacer were less condensation occurrence distribution. Second, when analyzed improved proposal of window and existing plan through simulation, improved proposal is superior from general side of the interior and exterior temperature, thermal break surrounding temperature and temperature of frame end, condensation occurrence point etc. Therefore, if it was used improved proposal with effect that improve in curtain wall of high-rise residential building, it may improve window condensation performance of curtain wall.