• Title/Summary/Keyword: wall to wall

Search Result 15,040, Processing Time 0.037 seconds

Effectiveness of porcine-derived xenograft with enamel matrix derivative for periodontal regenerative treatment of intrabony defects associated with a fixed dental prosthesis: a 2-year follow-up retrospective study

  • Kim, Yeon-Tae;Jeong, Seong-Nyum;Lee, Jae-Hong
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.3
    • /
    • pp.179-188
    • /
    • 2021
  • Purpose: Due to the difficulty of the hygienic care and sanitary management of abutment teeth and subpontic areas associated with fixed dental prostheses (FDPs), intrabony defects occur and accelerate due to the accumulation of plaque and calculus. This study aimed to evaluate the efficacy of regenerative periodontal surgery for intrabony defects associated with FDPs. Methods: The study inclusion criteria were met by 60 patients who underwent regenerative treatment between 2016 and 2018, involving a total of 82 intrabony defects associated with FDPs. Periodontal osseous lesions were classified as 1-, 2-, and 3-wall intrabony defects and were treated with an enamel matrix derivative in combination with bone graft material. The changes in clinical (pocket probing depth [PPD] and clinical attachment level [CAL]) and radiographic (defect depth and width) outcomes were measured at baseline and at 6, 12, and 24 months. Results: Six months after regenerative treatment, a significant reduction was observed in the PPD of 1-wall (P<0.001), 2-wall (P<0.001), and 3-wall (P<0.001) defects, as well as a significant reduction in the CAL of 2-wall (P<0.001) and 3-wall (P<0.001) intrabony defects. However, there was a significant increase in the CAL of 1-wall intrabony defects (P=0.003). Radiographically, a significant reduction in the depth of the 3-wall (P<0.001) defects and a significant reduction in the width of 2-wall (P=0.008) and 3-wall (P<0.001) defects were observed. The depth decreased in 1-wall defects; however, this change was not statistically significant (P=0.066). Conclusions: Within the limitations of the current study, regenerative treatment of 2- and 3-wall intrabony defects associated with FDPs improved clinical and radiological outcomes. Additional prospective studies are necessary to confirm our findings and to assess long-term outcomes.

Numerical Analysis for Crack and Opening of Keystone Block Wall

  • Kim, Doo-Jun
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.109-122
    • /
    • 1998
  • In the design and construction of Keystone block reinforced wall with geogrid, previous on the behaviour of wall in curved area is required. This study is to investigate the structural stability of wall and problems during construction in curved area. Previous analyzing methods, usually used for straight area of wall, have been reviewed to find any problems in applying to stability analysis of curved area. Thus, the purpose of this study is to show how to analyse the straight area of Keystone block wall first, and then turn this to use for analyzing various significance, concerning the design or construction of curved high keystone block wall. and the stress behavior on retaining wall between straight and curved conditions by F.E.M, using the shell analysis theory.

  • PDF

The Wall Shear Rate Distribution Near an End-to-End Anastomosis : Effects of Graft Compliance and Size

  • Rhee, Kye-Han
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • The patency rates of small diameter vascular grafts are disappointing because of the formation of thrombus and intimal hyperplasia. Among the various factors influencing the success of graft surgery, the compliance and the size of a graft are believed to be the most important physical properties of a vascular graft. Mismatch of compliance and size between an artery and a graft alters anastomotic flow characteristics, which may affect the formation of intimal hyperplasia. Among the hemodynamic factors influencing the development of intimal hyperplasia, the wall shear stress is suspected as the most important one. The wall shear stress distributions are experimentally measured near the end-to-end anastomosis models in order to clarify the effects of compliance and diameter mismatch on the hemodynamics near the anastomosis. The effects of radial wall motion, diameter mismatch and impedance phase angle on the wall shear rate distributions near the anastomosis are considered. Compliance mismatch generates both different radial wall motion and instantaneous diameter mismatch between the arterial portion and the graft portion during a flow cycle. Mismatch in diameter seems to be affecting the wall shear rate distribution more significantly compared to radial wall motion. The impedance phase angle also affects the wall shear rate distribution.

  • PDF

Fire resistance tests of LSF walls under combined compression and bending actions

  • Peiris, Mithum;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.483-500
    • /
    • 2022
  • Cold-formed steel wall panels sheathed with gypsum plasterboard have shown superior thermal and structural performance in fire. Recent damage caused by fire events in Australia has increased the need for accurate fire resistance ratings of wall systems used in low- and mid-rise construction. Past fire research has mostly focused on light gauge steel framed (LSF) walls under uniform axial compression and LSF floors under pure bending. However, in reality, LSF wall studs may be subject to both compression and bending actions due to eccentric loading at the wall to-roof or wall-to-floor connections. In order to investigate the fire resistance of LSF walls under the effects of these loading eccentricities, four full-scale standard fire tests were conducted on 3 m × 3 m LSF wall specimens lined with two 16 mm gypsum plasterboards under different combinations of axial compression and lateral load ratios. The findings show that the loading eccentricity can adversely affect the fire resistance level of the LSF wall depending on the magnitude of the eccentricity, the resultant compressive stresses in the hot and cold flanges of the wall studs caused by combined loading and the temperatures of the hot and cold flanges of the studs. Structural fire designers should consider the effects of loading eccentricity in the design of LSF walls to eliminate their potential failures in fire.

Measured Performance of Full Scale Tieback Walls in

  • Kim, Nak
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.5-24
    • /
    • 1998
  • Two instrumented full scale tieback walls in sand were constructed at to Geotechnical Experimentation Site located on the Texas A 51M University Riversic Measurements were obtained from the one row anchor wall and from the two row at different times during construction. The measured performance of the tieback walls is presented and investigated. The these walls at different construction stage is evaluated with respect to lateral wall. settlement of the ground, bending moment of the wall. axial load distribution and anchor load variation. The fundamental mechanism of a tieback wall in sand is and explained with the measurements.

  • PDF

The Analysis of Heat Transfer through the Multi-layered Wall of the Insulating Package

  • Choi, Seung-Jin
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • Thermal insulation is used in a variety of applications to protect temperature sensitive products from thermal damage. Several factors affect the performance of insulation packages. Among these factors, the thermal resistance of the insulating wall is the most important factor to determine the performance of the insulating package. In many cases, insulating wall consists of multi-layered structure and the heat transfer through this structure is a very complex process. In this study, an one-dimensional mathematical model, which includes all of the heat transfer principles covering conduction, convection and radiation in multi-layered structure, were developed. Based on this model, several heat transfer phenomena occurred in the air space between the layer of the insulating wall were investigated. From the simulation results, it was observed that the heat transfer through the air space between the layer were dominated by conduction and radiation and the low emissivity of the surface of each solid layer of the wall can dramatically increase the thermal resistance of the wall. For practical use, an equation was derived for the calculation of the thermal resistance of a multi-layered wall.

  • PDF

Characteristics and Applicability of CWS(Continuous Wall System)II Method (CWS(Continuous Wall System)II 공법의 특성 및 적용성)

  • Lim, In-sig;Lee, Jeong-bae;Kim, Jae-dong;Lee, Jai-ho;Woo, Sung-woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.43-47
    • /
    • 2008
  • CWSII method was developed to overcome the problems of frequent occurrence in the application of existing downward construction methods, especially in the case of using slurry wall instead of SCW or CIP as a retaining wall. By the improvements in connecting steel beams with the wall, CWSII method is able to ensure the settlement of a steel beam and the diaphragm effect of a slab while reducing the degree of difficulty and the term of works and the cost of construction. As the desired results, CWS method can be applied as a practical downward construction method regardless of the type of retaining wall. In this paper, besides the concept and features of CWSII method, it can be seen that the method can provide reliable and economical performances by comparing with existing methods.

  • PDF

Application of a near-wall turbulence model to the flows over a step with inclined wall (경사진 계단유동의 해석을 위한 벽면근접 난류모형의 적용)

  • An, Jong-U;Park, Tae-Seon;Seong, Hyeon-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.735-746
    • /
    • 1997
  • A nonlinear low-Reynolds-number k-.epsilon. model of Park and Sung was extended to predict the flows over a step with inclined wall, where a boundary layer flow without separation and a separated and reattaching flow coexist. For a better prediction of the flows, a slight modification was made on the function of the wall damping( $f_{\mu}$) and the model constant ( $C_{{\epsilon}1}$) in the .epsilon.-equation. The model performance was validated by comparing the model predictions with the experiment. It was shown that the flows over a step with inclined wall are simulated successfully with the present model.ent model.

Experimental Study on a Gabion Wall Reinforced by a Relatively Short Reinforcement (짧은 보강재가 부착된 가비온 옹벽의 모형실험)

  • Kim, Joon-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 2008
  • The Gabion wall have been developed on the basis of experimental works and the method is actively used in the actual site. In this study, a relatively small-scale experiment was carried out to figure out the failure behavior of a Gabion wall reinforced by a relatively short wire net to enlarge the axial tensile resistance which is important factor in the stability. The horizontal and vertical displacement of Gabion wall have been acquired and analyzed. Furthermore the results are compared with the test results for a non-reinforced Gabion wall that is performed at the same condition.

  • PDF

Corner Steel plate-Reinforced Core Wall System

  • Park, Hong-Gun;Kim, Hyeon-Jin;Park, Jin-Young
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.193-199
    • /
    • 2019
  • For better structural performance and constructability, a new composite core wall system using steel plate columns at the corners of the core section was developed. Using the proposed core wall, nonlinear section analysis and 3-dimensional structural analysis were performed for the prototype core wall section and super high-rise building, respectively. The analysis results showed that, when compared to traditional RC core wall case, the use of the corner steel plate columns provided better structural capacity, which allows less wall thickness and re-bars. Further, due to such effects, the construction cost and time can be reduced despite the use of steel plate columns.