• Title/Summary/Keyword: wall reinforcement

Search Result 520, Processing Time 0.026 seconds

An Experimental Study on Mortar to Apply Building Structure (건축물 구조체에 적용가능한 모르타르에 관한 실험적 연구)

  • Kwon, Mi-Ok;Yoon, Ki-Hyun;Jung, Kang-Sik;Kim, Gang-Ki;Paik, Min-Su;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.413-416
    • /
    • 2008
  • The concrete used most in construction materials. There is an overcrowded iron dimensions use of the concrete at time of the other concrete theory on the reinforcing rod back which did congestion and compares it with this, and there are more few dimensions of the aggregate than concrete, and quantity of aggregate passage is superior in mortar than concrete. If a volume rate of the aggregate writes mortar than concrete against this, therefore, unit amount increases, and quantity of paste increases and quantity of dry shrinkage than increase concrete. However, I let I regulate lay priest distribution of the aggregate, and the results rates increase and reduce unit amount and decrease quantity of dry shrinkage, and separation resistance and the gap passage characteristics are judged because it can be it in a substitute document of very superior concrete. I came to carry out the study that I watched to let I was useful a little more and do the improvement repair of a become building wall body, a basement pillar and repair reinforcement of the assistant in the reinforcing rod back, the old age when I made congestion here. I regulated lay priest distribution of the aggregate in the study and regulated substitution rate of the aggregate (40%, 50%, 60%) and divided W/C 30%, 40% standards and produced mortar and I compared quantity of air by this, slump, compression robbery and showed it this time.

  • PDF

A Stability Analysis of Geosynthetics Reinforced Soil Slopes I. - Slope Stability Analysis Considering Reinforcing Effects - (토목섬유 보강 성토사면의 안정해석 I. - 보강효과를 고려한 사면안정해석 -)

  • Kim Kyeong-Mo;Kim Hong-Taek;Lee Eun-Soo;Kim Young-Yoon;Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.95-105
    • /
    • 2005
  • Generally, a modified version of limit equilibrium method can be used to evaluate a slope stability of the geosynthetic reinforced soil slopes. In most cases, resisting effects of geosynthetic reinforcement are dealt with considering an increased shear strength on the potential slip surface. However, it is not clear that the methods satisfy all three equilibrium equations. As we know, the pattern of normal stress distribution along the slip surface is the key factor in calculating the safety factor of slopes. In this study, the new slope stability analysis method in which not only reinforcing effects of geosynthetics can be considered but also all three equilibrium equations can be satisfied was proposed with assuming the normal stress distribution along the slip surface as quadratic curve with horizontal $\chi-coordinate$. A number of illustrative examples, including published slope stability analysis examples for the reinforced and unreinforced soil slopes, loading test of large scale reinforced earth wall and centrifuge model tests on the geotextile reinforced soil slopes, were analyzed. As a result, it is shown that the newly suggested method yields a relatively accurate factor of safety for the reinforced and unreinforced soil slopes.

A Study for In-situ Application of High Strength Antiwashout Underwater Concrete (고장도용 수중불분리성 콘크리트의 현장적용을 위한 연구)

  • 문한영;송용규;이승훈;정재홍
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.336-345
    • /
    • 2001
  • The construction of underwater structures has been increased, but underwater concrete hassome problems of quality deterioration and contamination around in-situ of civil and architecture; therefore, new materials and methods for them are demanded. In this paper in-situ application of underwater antiwashout concrete which is manufactured for trio purpose of not only decreasing suspended solids and the heat of hydration but also increasing long term strength was studied. In the case of mock-up test(Ⅰ), when underwater antiwashout concrete, whose slump flow was 58 cm, was placed in the mock-up test at a speed of 24 ㎥/hr, it took about a minute to flow to the side wall, and the surface was maintained at horizontal level. In this case, compressive strength of the core specimens in each section was higher than the standard design compressive strength of 240 kgf/㎠. In the case of mock-up test(II), pH value and suspended solids of high strength underwater antiwashout concrete were 10.0∼11.0 and 51 mg/ℓ at 30 minutes later, initial and final setting time were about 30, 37 hr, and the slump flow of that was 53$\pm$2 cm. In the placement at a speed of 27 ㎥/hr, there was no large difference in flowing velocity, with or without reinforcement and flowing slope was maintained at horizontal level. In this case, compressive strength and elastic modulus of the core specimens somewhat decreased as flowing distance was far : however, those of central area showed the highest value.

A study on development of disaster-risk assessment criteria for steep slope -Based on the cases of NDMS in Ministry of Interior and Safety- (급경사지 재해위험도 평가 기준 개선 방안 연구 -행정안전부 급경사지 관리시스템 사례를 중심으로-)

  • Suk, Jae-Wook;Kang, Hyo-Sub;Jeong, Hyang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.372-381
    • /
    • 2019
  • In this study, the National Disaster Management System (NDMS) was analyzed to evaluate the disaster impact assessment standards for steep slopes. Problems in the assessment methods and systems were discovered, which could be reasons for poor reliability. The disaster-risk evaluation index needs improvement to evaluate various types of retaining walls, such as concrete/reinforced soil walls and reinforcing stone masonry. Additionally, using the same score for overturning, bulging, and efflorescence could be reasons for poor reliability, and different weighting factors are needed. Assessment methods are needed to subdivide the social influence evaluation index while considering environmental conditions of steep slopes, such as railroads and reservoirs. For the evaluation of steep slopes, standards for start and end points of steep slopes should be created for effective management, and disaster impact assessment needs to be performed after redevelopment from an advanced index for protection and reinforcement. These problems were derived from a current evaluation system, so a disaster impact assessment is necessary to supplement the results of this study.

A Collision Simulation Study on the Structural Stability for a Programmable Drone (충돌 시뮬레이션을 통한 코딩 교육용 드론의 구조적 안정성 연구)

  • Kim, Myung-Il;Jung, Dae-Yong;Kim, Su-Min;Lee, Jin-Kyu;Choi, Mun-Hyun;Kim, Ho-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2019
  • A programmable drone is a drone developed not only to experience the basic principles of flight but also to control drones through Arduino-based programming. Due to the nature of the training drones, the main users are students who are inexperienced in controlling the drones, which often cause frequent collisions with external objects, resulting in high damage to the drones' frame. In this study, the structural stability of the drone was evaluated by means of a structural dynamics based collision simulation for educational drone frame. Collision simulations were performed on three cases according to the impact angle of $0^{\circ}$, $+15^{\circ}$ and $-15^{\circ}$, using an analytical model with approximately 240,000 tetrahedron elements. Using ANSYS LS-DYNA, which provides excellent functions for the simulation of the dynamic behavior of three-dimensional structures, the stress distribution and strain generated on the drone upper, the drone lower, and the ring assembly were analyzed when the drones collided against the wall at a rate of 4 m/s. Safety factors resulting from the equivalent stress and the yield strain were calculated in the range of 0.72 to 2.64 and 1.72 to 26.67, respectively. To ensure structural stability for areas where stress exceeds yield strain and ultimate strain according to material properties, the design reinforcement is presented.

A Study of the Measurement of Nonwoven Geotextile Deformation with Strain Gauges (스트레인 게이지를 이용한 부직포의 변형거동 계측에 관한 연구)

  • Won, Myoung-Soo;Kim, You-Seong;Kim, Hyeong-Joo;Park, Byung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.25-32
    • /
    • 2007
  • Because of the increasing use of clayey soil as the backfill in reinfurced soil structures and embankments, nonwoven geotextiles of drain capability have been receiving much attention. However, there are few studies on the deformation behavior analysis of nonwoven geotextiles in reinforced soil structures in the site because nonwoven geotextiles which have low tensile stiffness and higher deformability than geogrids and woven geotextiles, are difficult to measure their deformation by using strain gauges. In this study, it was suggested that a new and more convenient method could measure the deformation behaviour of nonwoven geotextile using a strain gauge and examine the availability of the method by conducting laboratory tests and applying to two geosynthetics reinforced soil (GRS) walls in the site. The result of wide-width tensile test conducted under confining pressure of 70 kPa shows that the local deformation of nonwoven geotextile to be measured with strain gauges has a similar pattern to the total deformation measured with LVDT. In the GRS walls, nonwoven geotextile shows a larger deformation range than the woven geotextile and geogrid. However, the deformation patterns of these three reinforcement materials are similar. The function of strain gauges attached to nonwoven geotextile in the walls works normally for 16 months. Therefore, the method proposed in this study for measuring nonwoven geotextile deformation using a strain gauge has proved useful.

Conservation Treatment and Scientific Investigation of Daehye Bogakseonsaseo (Letters of Master Bogak) in the Goryeo Dynasty (고려시대 대혜보각선사서의 보존처리 및 과학적 조사)

  • Jang Yeonhee
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.47-64
    • /
    • 2023
  • Daehye Bogakseonsaseo (Letters of Master Bogak) in the possession of the National Museum of Korea is a Goryeo-era book produced in 1387, which was acquired in 2005 in a state of severe general damage. Subsequently, its production techniques and materials were examined using bibliographical characteristics and scientific analysis, based on which an overall conservation treatment was carried out. Janghwang(mounting) in bibliographical characteristics is a five-hole-stitch binding (五針眼線裝本), a single-lined rectangular box (四周單邊), and no column lines. The conservation treatment was examined in two aspects: the basic form and the conservation treatment process. The book is composed of the outer cover, original cover, end paper, and inner paper of 0.04-0.07mm thick, which is significantly thinner than general book paper. The conservation treatment was applied after the entire book was disassembled, based on the assessment that both the cover and the inner sheets of paper were in a dire condition due to deterioration. The conservation treatment comprised of the process of disassembly, cleaning, reinforcement of defective parts, scanning, and binding, with a paulownia box made for its storage. At the time of disassembly, samples were made for the inner sheets and the book string in order to conduct fiber identification. The fibers were identified using Safranin and C-stains. Safranin staining identified a thick fiber wall, in addition to cross-marking, dislocation, and transparent membranes. C-stain staining identified the fiber as mulberry, given the dark red residue. The book strap has a flat, circular cross-section, and was identified as cotton fiber, since a lumen was observed in the center.

An Estimation on the Applicability of Hollow FRP Soil Nailing System (중공식 FRP쏘일네일링 시스템의 적용성 평가)

  • Lee, Hyuk-Jin;Koh, Hyung-Seon;Han, Yong-Hee;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.385-393
    • /
    • 2006
  • Soil nailing is a reinforcement method used for stabilizing excavated walls or slopes. Due to its much advantages such as ease of construction and economical efficiency, use of soil nailing is increased. However, the soil nail has much disadvantages for use in urban area. The soil nail needs to be installed inevitably beyond private land boundary, which causes rent for use. For this reason, removable soil nailing system was developed. However, the removal rate of this system is just about 50¢¦70%. To resolve this problem, the Fiber Reinforced Plastic (FRP) soil nailing system which does not need to be removed and allows for the installation beyond private land, is developed. In this paper, through theoretical and experimental studies in laboratory and field such as prototype tests, pullout tests, we evaluate the stability and behavior characteristics of the FRP soil nailing system. And, numerical analyses using FLAC2D were performed with respect to various soil conditions, where prototype test for excavation wall and pullout tests were carried out. As a result of this study, the FRP soil nailing systems show similar behavior characteristics with those of removable soil nailing system. Finally, considering the serviceability and mechanical stability of FRP soil nailing systems, it is enough to be used as a good alternative of general soil nailing system.

Structural Behavior of the Buried flexible Conduits in Coastal Roads Under the Live Load (활하중이 작용하는 해안도로 하부 연성지중구조물의 거동 분석)

  • Cho, Sung-Min;Chang, Yong-Chai
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.323-328
    • /
    • 2002
  • Soil-steel structures have been used for the underpass, or drainage systems in the road embankment. This type of structures sustain external load using the correlations with the steel wall and engineered backfill materials. Buried flexible conduits made of corrugated steel plates for the coastal road was tested under vehicle loading to investigate the effects of live load. Testing conduits was a circular structure with a diameter of 6.25m. Live-load tests were conducted on two sections, one of which an attempt was made to reinforce the soil cover with the two layers of geo-gird. Hoop fiber strains of corrugated plate, normal earth pressures exerted outside the structure, and deformations of structure were instrumented during the tests. This paper describes the measured static and dynamic load responses of structure. Wall thrust by vehicle loads increased mainly at the crown and shoulder part of the conduit. However additional bending moment by vehicle loads was neglectable. The effectiveness of geogrid-reinforced soil cover on reducing hoop thrust is also discussed based on the measurements in two sections of the structure. The maximum thrusts at the section with geogrid-reinforced soil cover was 85-92% of those with un-reinforced soil cover in the static load tests of the circular structure; this confirms the beneficial effect of soil cover reinforcement on reducing the hoop thrust. However, it was revealed that the two layers of geogrid had no effect on reducing the overburden pressure at the crown level of structure. The obtained values of DLA decrease approximately in proportion to the increase in soil cover from 0.9m to 1.5m. These values are about 1.2-1.4 times higher than those specified in CHBDC.

Evaluation of mechanical characteristics of marine clay by thawing after artificial ground freezing method (인공동결공법 적용 후 융해에 따른 해성 점토지반의 역학적 특성 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Son, Young-Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.31-48
    • /
    • 2019
  • The artificial ground freezing (AGF) method is a groundwater cutoff and/or ground reinforcement method suitable for constructing underground structures in soft ground and urban areas. The AGF method conducts a freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as excavation supports and/or cutoff walls. However, thermal expansion of the pore water during freezing may cause excessive deformation of the ground. On the other hand, as the frozen soil is thawed after completion of the construction, mechanical characteristics of the thawed soil are changed due to the plastic deformation of the ground and the rearrangement of soil fabric. This paper performed a field experiment to evaluate the freezing rate of marine clay in the application of the AGF method. The field experiment was carried out by circulating liquid nitrogen, which is a cryogenic refrigerant, through one freezing pipe installed at a depth of 3.2 m in the ground. Also, a piezo-cone penetration test (CPTu) and a lateral load test (LLT) were performed on the marine clay before and after application of the AGF method to evaluate a change in strength and stiffness of it, which was induced by freezing-thawing. The experimental results indicate that about 11.9 tons of liquid nitrogen were consumed for 3.5 days to form a cylindrical frozen body with a volume of about $2.12m^3$. In addition, the strength and stiffness of the ground were reduced by 48.5% and 22.7%, respectively, after a freezing-thawing cycle.