• 제목/요약/키워드: wall interaction

검색결과 587건 처리시간 0.027초

Current Density and Thickness Effects on Magnetic Properties of Electrodeposited CoPt Magnetic Films

  • Kim, Hyeon Soo;Jeong, Soon Young;Suh, Su Jeong
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.417-421
    • /
    • 2013
  • The dominant magnetization reversal behavior of electrodeposited CoPt samples with various thicknesses deposited at different current densities was the domain wall motion by means of wall pinning. The magnetic interaction mechanism was dipolar interaction for all samples. The dipolar interaction strength was significantly affected by the sample thickness rather than by the current density, while the magnetic properties were closely related to the current density.

Influence of wall flexibility on dynamic response of cantilever retaining walls

  • Cakir, Tufan
    • Structural Engineering and Mechanics
    • /
    • 제49권1호
    • /
    • pp.1-22
    • /
    • 2014
  • A seismic evaluation is made of the response to horizontal ground shaking of cantilever retaining walls using the finite element model in three dimensional space whose verification is provided analytically through the modal analysis technique in case of the assumptions of fixed base, complete bonding behavior at the wall-soil interface, and elastic behavior of soil. Thanks to the versatility of the finite element model, the retained medium is then idealized as a uniform, elastoplastic stratum of constant thickness and semi-infinite extent in the horizontal direction considering debonding behavior at the interface in order to perform comprehensive soil-structure interaction (SSI) analyses. The parameters varied include the flexibility of the wall, the properties of the soil medium, and the characteristics of the ground motion. Two different finite element models corresponding with flexible and rigid wall configurations are studied for six different soil types under the effects of two different ground motions. The response quantities examined incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that the wall flexibility and soil properties have a major effect on seismic behavior of cantilever retaining walls and should be considered in design criteria of cantilever walls. Furthermore, the results of the numerical investigations are expected to be useful for the better understanding and the optimization of seismic design of this particular type of retaining structure.

Backfill and subsoil interaction effects on seismic behavior of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.117-138
    • /
    • 2014
  • The main focus of the current study is to evaluate the dynamic behavior of a cantilever retaining wall considering backfill and soil/foundation interaction effects. For this purpose, a three-dimensional finite element model (FEM) with viscous boundary is developed to investigate the seismic response of the cantilever wall. To demonstrate the validity of the FEM, analytical examinations are carried out by using modal analysis technique. The model verification is accomplished by comparing its predictions to results from analytical method with satisfactory agreement. The method is then employed to further investigate parametrically the effects of not only backfill but also soil/foundation interactions. By means of changing the soil properties, some comparisons are made on lateral displacements and stress responses. It is concluded that the lateral displacements and stresses in the wall are remarkably affected by backfill and subsoil interactions, and the dynamic behavior of the cantilever retaining wall is highly sensitive to mechanical properties of the soil material.

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

Experimental studies on the axisymmetric sphere-wall interaction in Newtonian and non-Newtonian fluids

  • Lee, Sang-Wang;Sohn, Sun-Mo;Ryu, Seung-Hee;Kim, Chongyoup;Song, Ki-Won
    • Korea-Australia Rheology Journal
    • /
    • 제13권3호
    • /
    • pp.141-148
    • /
    • 2001
  • In this research, experimental studies leave been performed on the hydrodynamic interaction between a spherical particle and a plane wall by measuring the force between the particle and wall. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear motion guide for the particle motion. Glycerin and dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1,000 ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia plays all important role in the particle-wall interaction in Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in Newtonian fluid. In non-Newtonian fluid, normal stress difference and viscoelasticity play important roles as expected. In the dilute solution weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also affect the physic of the problem.

  • PDF

다양한 경계 형상에 따른 구조-음향 연성계의 음향특성 (The Effects of the Boundary Shapes on the Structural-acoustic Coupled System)

  • 김양한;서희선
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.718-725
    • /
    • 2004
  • If a wall separates the bounded and unbounded spaces, then the wall’s role in transporting the acoustic characteristics of the two spaces is not well defined. In this paper, we attempted to see how the acoustic characteristics of two spaces are really affected by the spatial characteristics of the wall. In order to understand coupling mechanism, we choose a finite space and a semi-infinite space separated by the flexible or rigid wall and an opening. A volume interaction can be occurred in structure boundary and a pressure Interaction can be happened in the opening boundary. For its simplicity, without loosing generality, we use rather simplified rectangle model instead of generally shaped model. The source impedance is presented to the various types of boundaries. The distributions of pressure and active intensity are also presented at the cavity- and structure-dominated modes. The resulting modification, shifts of modal frequencies and changing of standing wave patterns to satisfy both coupled boundary conditions and governing equations, are presented.

분무액적과 벽의 상호작용에 대한 연구 (Study of Spray Droplet/Wall Interaction)

  • 양희천;유홍선;정연태
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.86-100
    • /
    • 1998
  • The impingement of the fuel spray on the wall within the combustion chamber in compact high-pressure injection engines and on the intake port wall in port-fuel-inje- ction type engines is unavoidable. It is important to understand the characteristics of impinging spray because it influences on the rate of fuel evaporation and droplet distrib- ution etc. In this study, the numerical study for the characteristics of spray/wall interaction is performed to test the applicability and reliability of spray/wall impingement models. The impingement models used are stick model, reflect model, jet model and Watkins and Park's model. The head of wall-jet eminating radilly outward from the spray impingement site contains a vortex. Small droplets are deflected away from the wall by the stagnation flow field and the gas wall-jet flow. While the larger droplets with correspondingly higher momentum are impinged on the wall surface and them are moved along the wall and are rolled up by wall-jet vortex. Using the Watkins and Park's model the predicted results show the most reasonable trend. The rate of increase of spread and the height of the developing wall-spray is predicted to decrease with increased ambient pressure(gas density).

  • PDF

측벽근방을 항해하는 대형선박에 미치는 측벽의 영향 (The Interaction Effect Acting on a Vessel in the Proximity of Bank Wall)

  • 이춘기
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 춘계학술대회 논문집
    • /
    • pp.197-202
    • /
    • 2004
  • 측벽과 선박간의 상호 간섭력이 선박 조종 운동에 상당히 크게 작용하는 것은 잘 알려져 있다. 이 논문예서는 측벽 부근을 항해하는 선박에 미치는 측벽의 간섭 영향에 대해서 다루어지고, 선박과 측벽간의 간섭력 추정을 위해 세장체 이론을 토대로 한 계산 방법이 적용되며, 선박 조종 운동에 미치는 측벽의 영향을 파악하기 위하여 선박과 돌제(반원)형상을 하고 있는 측벽간의 간섭력을 수치 계산하였다. 이 논문에서 사용되어진 계산 방법은 제한수역에서의 충돌 회피를 위한 선박의 자동 제어 시스템과 해상 고통 제어 시스템 및 항만 건설등을 위한 초기 설계 단계에서 선박 조종성의 예측에 상당히 유용할 것이다.

  • PDF

Analysis of settlements of space frame-shear wall-soil system under seismic forces

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1255-1276
    • /
    • 2015
  • The importance of considering soil-structure interaction effect in the analysis and design of RC frame buildings is increasingly recognized but still not penetrated to the grass root level owing to various complexities involved. It is well established fact that the soil-structure interaction effect considerably influence the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic lateral loads. In the present work, the linear soil-structure analysis of a G+5 storey RC shear wall building frame resting on isolated column footings and supported by deformable soil is presented. The finite element modelling and analysis is carried out using ANSYS software under normal loads as well as under seismic loads. Various load combinations are considered as per IS-1893 (Part-1):2002. The interaction analysis is carried out with and without shear wall to investigate the effect of inclusion of shear wall on the total and differential settlements in the footings due to deformations in the soil mass. The frame and soil mass both are considered to behave in linear elastic manner. It is observed that the soil-structure interaction effect causes significant total and differential settlements in the footings. Maximum total settlement in footings occurs under vertical loads and inner footings settle more than outer footings creating a saucer shaped settlement profile of the footings. Each combination of seismic loads causes maximum differential settlement in one or more footings. Presence of shear wall decreases pulling/pushing effect of seismic forces on footings resulting in more stability to the structures.

벽면충돌 가솔린 분무 모델 (Modeling of a Gasoline Spray Impinging on a Wall)

  • 김태완;원영호;박정규
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.30-37
    • /
    • 2001
  • Most gasoline engines employ a port injection system to achieve the better fuel-air mixing. A part of injected fuels adheres to the wall or intake valve and forms a film of liquid fuel. The other is secondarily atomized by the spray-wall interaction. A better understanding of this interaction will help in designing injection systems and controlling the strategies to improve engine performance and exhaust emissions. In the present research, the spray-wall interaction was investigated by a laser sheet visualization method. The shape of sprays was pictured at various impinging velocities and angles. The fuel dispersion was estimated by fluorescence light, and the atomization was evaluated by the enlarged images of droplets. The experimental results were compared with model predictions which are based on OPT method. The model has been modified to have the better agreement with the experimental result, and was implemented in the KIVA-II code.

  • PDF