• 제목/요약/키워드: wall deformation

검색결과 671건 처리시간 0.025초

Flexural behavior of precast concrete wall - steel shoe composite assemblies with dry connection

  • Wu, Xiangguo;Xia, Xinlei;Kang, Thomas H.K.;Han, Jingcheng;Kim, Chang-Soo
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.545-555
    • /
    • 2018
  • This study aimed to investigate the flexural behavior of precast concrete (PC) wall - steel shoe composite assemblies with various dry connection details at mid-span. Flexural tests were performed for five scenarios. Test parameters included the width of test specimens, arrangement of steel shoe connectors, and use of structural adhesive or waterproof tape at the mid-span joint. The test results showed that the PC wall - steel shoe composite assemblies joined at mid-span showed flexural damage patterns combined with rotational deformation, and the structural performance was satisfactory regardless of the arrangement of steel shoe connectors. Considering the two deformation components (flexural deformation by bending and rotational deformation due to joint opening), a theoretical model was proposed to analyze flexural strength and joint opening, and the simple model gave good predictions with acceptable accuracy.

주기하중을 받는 이중강판합성벽의 실험연구 (Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading)

  • 엄태성;박홍근;김진호;장인화
    • 한국강구조학회 논문집
    • /
    • 제20권2호
    • /
    • pp.289-301
    • /
    • 2008
  • 이중강판합성벽은 타이바로 연결된 강판외피 사이에 콘크리트를 충전시킨 구조벽으로서, 벽체의 구조성능을 향상시키고, 벽체의 두께를 줄이며, 별도의 거푸집 및 배근 공사없이 시공성을 향상시키기 위하여 개발되었다. 본 연구에서는 주기하중을 받는 이중강판합성벽의 비탄성거동특성 및 내진성능을 평가하기 위하여, 직사각형 및 T형 단면형상을 갖는 단일벽 및 병렬벽 실험체에 대하여 실험 연구를 수행하였다. 실험 결과, 이중강판합성벽은 주기하중에 대하여 핀칭이 없이 우수한 에너지소산능력을 나타냈다. 벽체하단부 기초의 접합상세와 단면형상에 따라 파괴모드 및 변형능력의 차이를 보였으며, 주로 벽체기초 또는 연결보 용접부의 파단과 강판국부좌굴에 의하여 파괴되었다. 적절한 용접 및 보강 상세를 갖는 실험체들은 2.0~3.7% 층간변형각의 변형능력을 보였다. 또한 벽체와 연결보의 비탄성강도를 고려하여 단일벽 및 병렬벽 실험체의 하중재하능력을 평가하였으며, 이를 실험결과와 비교하였다.

Linear regression analysis for factors influencing displacement of high-filled embankment slopes

  • Zhang, Guangcheng;Tan, Jiansong;Zhang, Lu;Xiang, Yong
    • Geomechanics and Engineering
    • /
    • 제8권4호
    • /
    • pp.511-521
    • /
    • 2015
  • It is a common failure type that high-filled embankment slope sideslips. The deformation mechanism and factors influencing the sideslip of embankment slope is the key to reduce the probability of this kind of engineering disaster. Taking Liujiawan high-filled embankment slope as an example, the deformation and failure characteristics of embankment slope and sheet-pile wall are studied, and the factors influencing instability are analyzed, then the correlation of deformation rate of the anti-slide plies and each factor is calculated with multivariate linear regression analysis. The result shows that: (1) The length of anchoring segment is not long enough, and displacement direction of embankment and retaining structure are perpendicular to the trend of the highway; (2) The length of the cantilever segment is so large that the active earth pressures behind the piles are very large. Additionally, the surface drainage is not smooth, which leads to form a potential sliding zone between bottom of the backfill and the primary surface; (3) The thickness of the backfill and the length of the anti-slide pile cantilever segment have positive correlation with the deformation whereas the thickness of anti-slide pile through mudstone has a negative correlation with the deformation. On the other hand the surface water is a little disadvantage on the embankment stability.

벽체 단부의 횡보강근 양에 따른 변형능력의 평가 (Effect of Edge Confinement on Deformation Capacity in the Isolated RC Structural Walls)

  • 한상환;오영훈;이리형
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.101-112
    • /
    • 1999
  • Structural walls have been mostly used for the design of reinforced concrete buildings in seismic areas because they play a role as an efficient bracing system and offer great potential for lateral load resistance and drift control. The lateral resistance system for the earthquake load should be designed to have enough ductility and stable hysteretic response in the critical regions where plastic deformation occurred beyond yielding. The behavior of the reinforced concrete element to experience large deformation in the critical areas by a major earthquake is affected by the performance of the confined core concrete. Thus, the confinement of concrete by suitable arrangements of transverse reinforcement results in a significant increase in both the strength and ductility of compressed concrete. This paper reports the experimental results of reinforced concrete structural walls for wall-type apartment structure under axial loads and cyclic reversal of lateral loads with different confinement of the boundary elements. The results show that confinement of the boundary element by open 'U'-bar and cross tie is effective. The shear strength capacity is not increased by the confinement but deformation capacity is improve.

Dilatation characteristics of the coals with outburst proneness under cyclic loading conditions and the relevant applications

  • Li, Yangyang;Zhang, Shichuan;Zhang, Baoliang
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.459-466
    • /
    • 2018
  • By conducting uniaxial loading cycle tests on the coal rock with outburst proneness, the dilatation characteristics at different loading rates were investigated. Under uniaxial loading and unloading, the lateral deformation of coal rock increased obviously before failure, leading to coal dilatation. Moreover, the post-unloading recovery of the lateral deformation was rather small, suggesting the onset of an accelerated failure. As the loading rate increased further, the ratio of the stress at the dilatation critical point to peak-intensity increased gradually, and the pre-peak volumetric deformation decreased with more severe post-peak damage. Based on the laboratory test results, the lateral deformation of the coals at different depths in the #1302 isolated coal pillars, Yangcheng Coal Mine, was monitored using wall rock displacement meter. The field monitoring result indicates that the coal lateral displacement went through various distinct stages: the lateral displacement of the coals at the depth of 2-6 m went through an "initial increase-stabilize-step up-plateau" series. When the coal wall of the working face was 24-18 m away from the measuring point, the coals in this region entered the accelerated failure stage; as the working face continued advancing, the lateral displacement of the coals at the depth over 6 m increased steadily, i.e., the coals in this region were in the stable failure stage.

단부 증타 보강된 RC 전단벽체의 전단강도 (Shear Strength of Retrofitted RC Squat Wall by Additional Boundary Element)

  • 이유선;홍성걸;박영미
    • 콘크리트학회논문집
    • /
    • 제27권5호
    • /
    • pp.489-499
    • /
    • 2015
  • 내진 보강 공법의 보강효과 파악을 위해선 이에 대한 이론적 규명이 필요하다. 이에 본 연구는 단부에 기둥 부재를 증타한 단근 배근된 전단벽체를 대상으로 해 보강되는 기둥의 상세와 일체화 거동을 고려한 전단강도 모델을 제안했다. 이 모델은 증타된 기둥부재의 전단변형이 집중되는 길이를 가정해 이를 일체화된 벽체 내에 발생하는 스트럿 두께 산정에 이용했다. 뿐만 아니라 이 길이 내에 집중 발생하는 전단변형률을 유도, 이를 일체화 거동을 고려한 적합성 조건을 기존 전단벽체의 해석 알고리즘에 도입함으로써 증타 보강된 벽체의 해석 알고리즘을 새로이 제안했다. 또한 제안된 알고리즘을 통해 계산된 전단강도로 횡력 저항 메커니즘을 단일 스트럿 화 시켜줌으로써 보강부재의 초기강성을 제안하였다. 본 연구에서 제안한 방법의 타당성을 확인하기 위해 해석 결과 값을 본 연구에서 수행한 증타 보강된 벽체를 대상으로 한 실험뿐만 아니라 기존 RC 골조 내에 RC 전단벽체를 신설해 보강한 실험의 결과와 비교해 본 결과, 기둥부재의 상세를 고려하면서 동시에 기존 기준들에 비해 실험결과에 가깝게 예측할 수 있음을 확인했다.

Orientation and deformation of FENE dumbbells in confined microchannel and contraction flow geometry

  • Song, Sun-Jin;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong;Yeo, Jong-Kee
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.147-156
    • /
    • 2007
  • The orientation and deformation of polymer chains in a confined channel flow has been investigated. The polymer chain was modeled as a Finitely Extensible Nonlinear Elastic (FENE) dumbbell. The Brownian configuration field method was extended to take the interaction between the flow and local chain dynamics into account. Drag and Brownian forces were treated as anisotropic in order to reflect the influence of the wall in the confined flow. Both Poiseuille flow and 4 : 1 contraction flow were considered. Of particular interest was molecular tumbling of polymer chains near the wall. It was strongly influenced by anisotropic drag and high shear close to the wall. We discussed the mechanism of this particular behavior in terms of the governing forces. The dumbbell configuration was determined not only by the wall interaction but also by the flow type of the geometric origin. The effect of extensional flow on dumbbell configuration was also discussed by comparing with the Poiseuille flow.

Random topological defects in double-walled carbon nanotubes: On characterization and programmable defect-engineering of spatio-mechanical properties

  • A. Roy;K. K. Gupta;S. Dey;T. Mukhopadhyay
    • Advances in nano research
    • /
    • 제16권1호
    • /
    • pp.91-109
    • /
    • 2024
  • Carbon nanotubes are drawing wide attention of research communities and several industries due to their versatile capabilities covering mechanical and other multi-physical properties. However, owing to extreme operating conditions of the synthesis process of these nanostructures, they are often imposed with certain inevitable structural deformities such as single vacancy and nanopore defects. These random irregularities limit the intended functionalities of carbon nanotubes severely. In this article, we investigate the mechanical behaviour of double-wall carbon nanotubes (DWCNT) under the influence of arbitrarily distributed single vacancy and nanopore defects in the outer wall, inner wall, and both the walls. Large-scale molecular simulations reveal that the nanopore defects have more detrimental effects on the mechanical behaviour of DWCNTs, while the defects in the inner wall of DWCNTs make the nanostructures more vulnerable to withstand high longitudinal deformation. From a different perspective, to exploit the mechanics of damage for achieving defect-induced shape modulation and region-wise deformation control, we have further explored the localized longitudinal and transverse spatial effects of DWCNT by designing the defects for their regional distribution. The comprehensive numerical results of the present study would lead to the characterization of the critical mechanical properties of DWCNTs under the presence of inevitable intrinsic defects along with the aspect of defect-induced spatial modulation of shapes for prospective applications in a range of nanoelectromechanical systems and devices.

강판을 사용한 흙막이 벽체공법(SGP) 거동분석 (Behavior Analysis of Earth Retaining Wall with S.G.P method)

  • 조성하;최관우;유광호;김성덕;김영현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1269-1277
    • /
    • 2008
  • In this study, the behavior of retaining wall composed with soldier pile and steel plate is analysed. The steel guided plate(SGP) method is applied to the site near the riverside in which geotechnical condition results in flood and large deformation. Following the concept of preventing infiltration from huge permeability stratum and decreasing deformation with strengthened stiffness simultaneously, this method is discussed its effectiveness with the instrumentation data. Also the differences of behavior between predicted and detected are investigated with numerical methods. It is found that SGP has a good deal of advantages with regard to balancing between control of permeability and deformation. In addition, it is revealed that SGP can give resonable construction plan for sustaining stiffness for which the sheetpiling method cannot be adopted effectively in waterfront condition.

  • PDF

AN OBSERVATION ON THE FRACTURE SYSTEMS OF THE SOUTHERN VIETNAM

  • Chang Sung Jin;Long Nguyen Tien
    • 한국석유지질학회:학술대회논문집
    • /
    • 한국석유지질학회 2001년도 제8차 학술발표회 발표논문집
    • /
    • pp.6-22
    • /
    • 2001
  • A study of the fracture systems in outcrops of southern onshore Vietnam revealed two kinds of fracture groups according to their origin: cooling fractures and deformation related fractures. Cooling of magma introduced extensive fractures in the batholiths with wide spacing and narrow aperture. They are found widespread in all magmatic bodies, but result in poor reservoir quality due to low bulk porosity and narrow aperture. Cooling fractures are often reactivated during later stress regimes. Deformation related fractures, especially 'fault damage zones' and 'hanging wall deformation' is thought to form the most important reservoir type in the fractured basement rock. The porosity formed by intense fracturing and fault breccia along minor fault zones is thought to be the producing zones in the producing fields of Cuu Long basin. They are found along major faults and widespread in hanging wall blocks.

  • PDF