• 제목/요약/키워드: wall crack

검색결과 389건 처리시간 0.033초

Validation of the seismic response of an RC frame building with masonry infill walls - The case of the 2017 Mexico earthquake

  • Albornoz, Tania C.;Massone, Leonardo M.;Carrillo, Julian;Hernandez, Francisco;Alberto, Yolanda
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.229-251
    • /
    • 2022
  • In 2017, an intraplate earthquake of Mw 7.1 occurred 120 km from Mexico City (CDMX). Most collapsed structural buildings stroked by the earthquake were flat slab systems joined to reinforced concrete (RC) columns, unreinforced masonry, confined masonry, and dual systems. This article presents the simulated response of an actual six-story RC frame building with masonry infill walls that did not collapse during the 2017 earthquake. It has a structural system similar to that of many of the collapsed buildings and is located in a high seismic amplification zone. Five 3D numerical models were used in the study to model the seismic response of the building. The building dynamic properties were identified using an ambient vibration test (AVT), enabling validation of the building's finite element models. Several assumptions were made to calibrate the numerical model to the properties identified from the AVT, such as the presence of adjacent buildings, variations in masonry properties, soil-foundation-structure interaction, and the contribution of non-structural elements. The results showed that the infill masonry wall would act as a compression strut and crack along the transverse direction because the shear stresses in the original model (0.85 MPa) exceeded the shear strength (0.38 MPa). In compression, the strut presents lower stresses (3.42 MPa) well below its capacity (6.8 MPa). Although the non-structural elements were not considered to be part of the lateral resistant system, the results showed that these elements could contribute by resisting part of the base shear force, reaching a force of 82 kN.

반경방향의 모서리 균열을 갖고 내면이 경사기능재료(FGM)로 코팅된 두꺼운 실린더의 겉보기 파괴인성해석 (Analysis of Apparent Fracture Toughness of a Thick-Walled Cylinder with an FGM Coating at the Inner Surface Containing a Radial Edge Crack)

  • 알리 모하마드 압사;라셀;송정일
    • Composites Research
    • /
    • 제23권2호
    • /
    • pp.1-9
    • /
    • 2010
  • 본 연구는 실린더 내부가 경사가능재료로 코팅된 두꺼운 벽을 가진 실린더의 겉보기 파괴인성치를 해석한 것이다. 실린더는 내부로부터 반경방향의 단일 모서리 균열이 내재되어 있으며, 균열면과 내면에는 내압을 받고 있는 것으로 가정하였다. 소결온도로부터 냉각 결과 균일한 열팽창계수로 인해 실린더에는 비적합 고유스트레인이 생성되었다. 기존의 연구에서 소개된 응력확대계수 평가법에 기초해 겉보기 파괴인성치를 계산하였다. 본 연구에서는 TiC/$Al_{2}O_{3}$ FGM 코팅된 실린더를 사용하였고 겉보기 파괴인성치의 수치적인 결과를 도식화하였다. 재료분포프로파일, 실린더 벽 두께, 적용온도와 코팅두께등이 겉보기 파괴인치에 미치는 영향이 상세히 조사되었으며, 이러한 모든 인자는 실린더의 겉보기 파괴인성치를 조절하는데 중요한 역할을 하는 것으로 밝혀졌다.

2급 와동의 복합레진 충전에 관한 유한요소법적 응력분석 (FINITE ELEMENT STRESS ANALYSIS OF A CLASS II COMPOSITE RESIN RESTORATION)

  • 송보경;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제20권2호
    • /
    • pp.627-643
    • /
    • 1995
  • The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on the maxillary left first molar and then filled with composite resin. Three dimentional model with 3049 nodes and 2450 8-node blick elements was made by the serial photographic method and isthmus (1/4, 1/3, 1/2 and 2/3 of intercusplal distance between mesiobuccal cusp tip and mesiolingual cusp tip) was varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 1500N was applied vertically on the node from the lingual slope of the mesiobuccal cusp. The results were as follows : 1. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 2. When it comes to stress distribution, the stress was concentrated in the facio-gingival line angle and the buccal side of the distal margin of the cavity in both Band R model. 3. With the increase of the isthmus width, the stress decreased in the area of the facio-gingival line angle, and increased in the area of facio-gingival line angle as well as the buccal side of the distal margin of the cavity in B model. In R model, the stress increased both in the area of facio-gingival line angle and the buccal side of the distal margin of the cavity, therefore the possibility of crack increased. 4. As the width of cavity increased, in B model, the direction of crack moved from horizontal to vertical on the facio-gingival line angle and the facio-pulpal line angle. In R model, the direction of the crack was horizontal on the facio-gingival line angle and moved from horizontal to the $45^{\circ}$ direction on the facio-pulpal line angle.

  • PDF

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Coolant Leaking in a T-Branch of Square Cross-Section

  • Choi, Young-Don;Hong, Seok-Woo;Park, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권2호
    • /
    • pp.51-60
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. Standard k-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

철도하부 비개착공법의 벽면배면토사의 미소변형에 따른 수평토압 및 응력이완영역에 관한 연구 (A study on the lateral Earth Pressure and Stress Relaxation Region According to the Infinitesimal Deformation of the Wall and Backside Earth Built by Non-excavation Method Under Railroad)

  • 박윤식;이준석;조국환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2393-2399
    • /
    • 2011
  • In the case where the bottom of railroad is penetrated by non-excavation construction method, the design is performed based on the assumption that there is no displacement and no change of stress However, measurement data showed that reduction of earth pressure and relaxation of stress take place by the displacement. In this study, we investigated the earth pressure on the structure under the railroad constructed by a non-excavation method and the stress relaxation region. The design based on earth pressure is non-economical because it is an over design. Relaxation of stress may lead to road base settlement and rail irregularly due to the reduced railroad supporting stiffness, to ballast crack in the case of concrete roadbed. The result showed that it is reasonable to set the stress on the structures as active earth pressure not as earth pressure at rest. Additionally, the study on the stress relaxation region identified the regions that should be supported in future construction by a non-excavation method.

  • PDF

A Novel Method to Fabricate Tough Cylindrical Ti2AlC/Graphite Layered Composite with Improved Deformation Capacity

  • Li, Aijun;Chen, Lin;Zhou, Yanchun
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.369-374
    • /
    • 2012
  • Based on the structure feature of a tree, a cylindrical $Ti_2AlC$/graphite layered composite has been fabricated through heat treating a graphite column and six close-matched thin wall $Ti_2AlC$ cylinders bonded with the $Ti_2AlC$ powders at $1300^{\circ}C$ and low oxygen partial pressure. SEM examination reveals that the bond interlayers between cylinders or that between cylinder and column are not fully dense without any crack formation. During the compressive test, the strain of the $Ti_2AlC$/graphite layered composite is about twice higher than that of the monolithic $Ti_2AlC$ ceramic, and the compressive strength of the layered composite is 348 MPa. The layered composite show the noncatastrophic fracture behaviors due to the debonding and shelling off of the layers, which are different from the monolithic $Ti_2AlC$ ceramic. The mechanism of the improved deformation capacity and noncatastrophic failure modes are attributed to the presence of the central soft graphite column and cracks deflection by the bond interlayers.

Decoupling 장전시 천공벽에 작용하는 발파하중의 산정 (Determination of Blast Load on the Boreholes Wall Using Decoupled Charge)

  • 김상균;이인모;최종원;김신;이두화
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.209-216
    • /
    • 1999
  • In tunneling and road cuts by blasting, it is of the utmost importance that the remaining rock is of high quality in order to avoid rockfall, rockslides and excessive maintenance work. Therefore, numerous blasting techniques which make use of decoupled charge or shock wave superposition effect have been used to control overbrake. In this paper. some approximate method for the determination of blast load according to the charge condition was introduced at first and, instrumented tests were conducted in small scale transparent material to investigate the shape and amplitude of blast load around the bore hole. Compare to the fully coupled charge, low amplitude of blast load around the bore hole was observed in the decoupled charge and explosion gas pressure was important in the shape of blast load. Therefore, quasi-static behaviour of the crack pattern was shown due to low loading rate.

  • PDF

연료전지 Humidifier의 수명향상 개선을 위한 구조진동해석 (Securing Reliability Analysis of Humidifier Fuel Cell)

  • 하정민;이종명;장용호;김선화;최병근
    • 한국소음진동공학회논문집
    • /
    • 제24권8호
    • /
    • pp.613-620
    • /
    • 2014
  • A few Humidifier have vibration problems caused by velocity of flow, piping vibration and karman vortex. The crack is generated on pipe wall and humidifier are damaged. Vibration analysis is conducted to prevent pipe damage during the design. But the other problem are caused after analysis of vibration. Therefore in this paper, the vibration and static analysis have been measured and analyzed for pipes and curve. Also modal test is conducted for analysis of natural frequency.

Service load response prediction of reinforced concrete flexural members

  • Ning, Feng;Mickleborough, Neil C.;Chan, Chun-Man
    • Structural Engineering and Mechanics
    • /
    • 제12권1호
    • /
    • pp.1-16
    • /
    • 2001
  • A reliable and accurate method has been developed to predict the flexural deformation response of structural concrete members subject to service load. The method that has been developed relates the extent of concrete cracking, measured as a function of the magnitude of applied moment in a member, to the reduction in the effective moment of inertia of cracked reinforced concrete members under service load conditions. The ratio of the area of the moment diagram where the moment exceeds the cracking moment, to the total area of the moment diagram for any loading, provides the basis for the calculation of the effective moment of inertia. This ratio also represents mathematically a probability of crack occurrence. Verification of this method for the determination of the effective moment of inertia has been achieved from an experimental test program, and has included beam tests with different loading configurations, and shear wall tests subjected to a range of vertical and lateral load levels. Further verification of this method has been made with reference to the experimental investigation of other recently published work.

액체로켓엔진 연소기용 니켈/크롬 코팅의 공정 개발 (Development of Ni/Cr Plating Process for LRE Thrust Chamber)

  • 조황래;방정석;이병호;이광진;임병직;한영민;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.603-607
    • /
    • 2009
  • 액체로켓엔진 연소기의 내벽에 사용하기 위한 니켈/크롬 도금 공정 개발을 수행하였다. 열충격 시험을 통해 니켈 도금 조건을 선별하였고 니켈/크롬 도금이 수행된 축소형 연소기의 연소시험을 통해 도금 층의 내구성 검증을 수행하였다. 시험결과 도금 층의 균열 및 박리는 발견되지 않았고, 이 결과로부터 현재 사용중인 대기 플라즈마 용사된 세라믹 코팅의 대안으로 니켈/크롬 도금을 액체로켓엔진 연소기에 사용할 수 있으리라 사료된다.

  • PDF