Browse > Article
http://dx.doi.org/10.4191/kcers.2012.49.4.369

A Novel Method to Fabricate Tough Cylindrical Ti2AlC/Graphite Layered Composite with Improved Deformation Capacity  

Li, Aijun (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences)
Chen, Lin (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences)
Zhou, Yanchun (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences)
Publication Information
Abstract
Based on the structure feature of a tree, a cylindrical $Ti_2AlC$/graphite layered composite has been fabricated through heat treating a graphite column and six close-matched thin wall $Ti_2AlC$ cylinders bonded with the $Ti_2AlC$ powders at $1300^{\circ}C$ and low oxygen partial pressure. SEM examination reveals that the bond interlayers between cylinders or that between cylinder and column are not fully dense without any crack formation. During the compressive test, the strain of the $Ti_2AlC$/graphite layered composite is about twice higher than that of the monolithic $Ti_2AlC$ ceramic, and the compressive strength of the layered composite is 348 MPa. The layered composite show the noncatastrophic fracture behaviors due to the debonding and shelling off of the layers, which are different from the monolithic $Ti_2AlC$ ceramic. The mechanism of the improved deformation capacity and noncatastrophic failure modes are attributed to the presence of the central soft graphite column and cracks deflection by the bond interlayers.
Keywords
Biomimetic material; MAX phases; Layered composite; Deformation capacity; Noncatastrophic failure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. H. Wang and Y. C. Zhou, "High-temperature Oxidation of $Ti_2AlC$ in Air," Oxid. Met., 59 303-20 (2003).   DOI
2 Y. C. Zhou and X. H. Wang, "Deformation of Polycrystalline $Ti_2AlC$ under Compression," Mater. Res. Innovat., 5 87-93 (2001).   DOI
3 M. Radovic, M. W. Barsoum, A. Ganguly, T. Zhen, P. Finkel, S. R. Kalidindi, and E. Lara-Curzio, "On the Elastic Properties and Mechanical Damping of $Ti_3SiC_2,\;Ti_3GeC_2,\;Ti_3Si_{0.5}Al_{0.5}C_2\;and\;Ti_2AlC$ in the 300-1573 K Temperature Range," Acta Mater., 54 2757-67 (2006).   DOI
4 B. Manoun, R. P. Gulve, S. K. Saxena, S. Gupta, and M. W. Barsoum, "Compression Behavior of $M_2AlC$ (M=Ti, V, Cr, Nb, and Ta) Phases to Above 50 GPa," Phys. Rev. B, 73 No.024110 (2006).   DOI
5 M. W. Barsoum, I. Salama, T. El-Raghy, J. Golczewski, H. J. Seifert, F. Aldinger, W. D. Porter, and H. Wang, "Thermal and Electrical Properties of $Nb_2AlC,\;(Ti,\;Nb)_2AlC$ and $Ti_2AlC$," Metall. Mater. Trans. A, 33 2775-9 (2002).   DOI
6 D. R. Askeland and P. P. Phulé, "Construction Materials" in The Science and Engineering of Materials, Fifth Edition, Edited by E. Veitch, pp. 656-62, Thomsonlearning, Singapore, 2006.
7 W. J. Clegg, K. Kendall, N. M. Alford, T. W. Button, and J. D. Birchall, "A Simple Way to Make Tough Ceramics," Nature, 347 455-7 (1990).   DOI
8 H. Liu and S. M. Hsu, "Fracture Behavior of Multilayer Silicon Nitride/Boron Nitride Ceramics," J. Am. Ceram. Soc., 79 [9] 2452-7 (1996).   DOI
9 D. Kovar, M. D. Thouless, and J. W. Halloran, "Crack Deflection and Propagation in Layered Silicon Nitride/Boron Nitride Ceramics," J. Am. Ceram. Soc., 81 [4] 1004-12 (1998).
10 H. Tomaszewski, H. Weglarz, A. Wajler, M. Boniecki, and D. Kalinski, "Multilayer Ceramic with High Failure Resistance," J. Eur. Ceram. Soc., 27 1373-7 (2007).   DOI
11 Y. M. Luo, W. Pan, S. Q. Li, J. Chen, R. G. Wang, and J. Q. Li, "Mechanical Property and Microstructure of a $Si_3N_4/Ti_3SiC_2$ Multilayer Composite," Ceram. Int., 28 223-6 (2002).   DOI
12 Q. F. Zan, C. A. Wang, Y. Huang, S. K. Zhao, and C. W. Li, "The Interface-layer and Interface in the $Al_2O_3/Ti_3SiC_2$ Multilayer Composite Prepared by in situ Synthesis," Mater. Lett., 57 3826-32 (2003).   DOI
13 M. Lopacinski, J. Puszynski, and J. Lis, "Synthesis of Ternary Titanium Aluminum Carbides Using Self-Propagating High-Temperature Synthesis Technique," J. Am. Ceram. Soc., 84 [12] 3051-3 (2001).   DOI
14 J. Li and Y. C. Zhou, "A Novel Method to Make Tough $Ti_2AlC/Al_2O_3\;and\;Ti_3AlC_2/Al_2O_3$ Laminated Composites," J. Am. Ceram. Soc., 93 [12] 4110-4 (2010).   DOI
15 M. W. Barsoum, "The $M_{N+1}AX_N$ Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates," Prog. Solid State Chem., 28 201-81 (2000).   DOI
16 M. A. Pietzka and J. C. Schuster, "Summary of Constitutional Data on the Al-C-Ti System," J. Phase Equilib., 15 392-400 (1994).   DOI
17 M. W. Barsoum, M. Ali, and T. El-Raghy, "Processing and Characterization of $Ti_2AlC,\;Ti_2AlN\;and\;Ti_2AlC_{0.5}N_{0.5}$," Metall. Mater. Trans. A, 31 1857-65 (2000).   DOI
18 X. H. Wang and Y. C. Zhou, "Solid-Liquid Reaction Synthesis and Simultaneous Densification of Polycrystalline $Ti_2AlC$," Z. Metalkd., 93 66-71 (2002).   DOI
19 M. W. Barsoum, D. Brodkin, and T. El-Raghy, "Layered Machinable Ceramics for High Temperature Applications," Scripta Mater., 36 535-41 (1997).   DOI
20 M. Sundberg, G. Malmqvist, A. Magnusson, and T. El-Raghy, "Alumina Forming High Temperature Silicides and Carbides," Ceram. Int., 30 1899-905 (2004).   DOI
21 J. W. Byeon, J. Liu, M. Hopkins, W. Fischer, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, and Y. H. Sohn, "Microstructure and Residual Stress of Alumina Scale Formed on $Ti_2AlC$ at High Temperature in Air," Oxid. Met., 68 97-111 (2007).   DOI