• Title/Summary/Keyword: wall collapse

Search Result 239, Processing Time 0.027 seconds

A Study on the Collapse Reason by Slope Stability Analysis Considering Construction Stages (시공단계를 고려한 비탈면의 안정성 검토를 통한 비탈면 활동원인 연구)

  • Byun, Yoseph;Jang, Hyeonkil;Jung, Kyoungsik;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.25-31
    • /
    • 2011
  • In recent rainy seasons, severe rain storms have caused frequent reinforced retaining wall collapses and slope sliding which have lead to casualties. In this paper, investigating cases of reinforced retaining wall failure, the causes of cracks in reinforced retaining wall and slope sliding have been examined, and a finite element analysis considering the construction phase has been done to analyze the cause and characteristics of slope sliding. As a result, reinforced retaining wall displacement has increased due to heavy rain storms and the increase size has been shown to be large. From these results, it has been analyzed that pile driving can have an effect on the collapse of reinforced retaining walls.

Reinforced Earth Retaining Wall of The Collapsed-A Case Study. (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.958-967
    • /
    • 2004
  • This paper deal with cause and analysis about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extracted from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy are cause of the collapse.

  • PDF

A Study on the Strengthening effect of Concrete Reinforcement Bracket on the External Clay Brick Wall (외부치장적벽돌 벽체에 대한 콘크리트 보강브라켓의 보강효과에 관한 연구)

  • Kim, Sun-Woo;Kim, Yang-Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.117-118
    • /
    • 2020
  • The masonry structure is constructed by cement mortar binding material of brick objects and uses reinforced hardware (connected hardware or wall tie) together when building. However, over time, the corrosion of reinforced steel and the deterioration of joint mortar as well as bricks cause the risk of collapse. In particular, when the externally decorated brick wall is installed on the concrete girder for each floor, the angle bracket is not constructed or corroded, the full-layer weight load is applied to the wall of 0.5B, which is an example of full-scale or collapse. The purpose of this study is to provide numerical information on the reinforcement design by experimentally studying the structural performance of concrete reinforcement brackets that reinforce the vertical load of the exterior wall.

  • PDF

Analysis of Triggering Events of a Geosynthetic Wall Slope Failure within Slope Stability Perspective (사면안정측면에서의 보강토 옹벽 붕괴 요인 분석)

  • Yoo, Chung-Sik;Jung, Hye-Young;Jung, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.207-215
    • /
    • 2005
  • This paper presents a case history of a geosynthetics-reinforced segmental retaining wall, which collapsed during a sever rainfall immediately after the completion of the wall construction. In an attempt to identify possible causes for the collapse, a comprehensive investigation was carried out including physical and strength tests on the backfill, stability analyses on the as-built design based on the current design approaches, and slope stability analyses with pore pressure consideration. The investigation revealed that the inappropriate as-built design and the bad-quality backfill were mainly responsible for the collapse. This paper describes the site condition including wall design, details of the results of investigation and finally, lessons learned. Practical significance of the findings from this study is also discussed.

  • PDF

Collapse fragility analysis of the soil nail walls with shotcrete concrete layers

  • Bayat, Mahmoud;Emadi, Amin;Kosariyeh, Amir Homayoun;Kia, Mehdi;Bayat, Mahdi
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.279-283
    • /
    • 2022
  • The seismic analytic collapse fragility of soil nail wall structures with a shotcrete concrete covering is investigated in this paper. The finite element modeling process has been well described. The fragility function evaluates the link between ground motion intensities and the likelihood of reaching a specific level of damage. The soil nail wall has been subjected to incremental dynamic analysis (IDA) from medium to strong ground vibrations. The nonlinear dynamic analysis of the soil nail wall uses a set of 20 earthquake ground motions with varying PGAs. PGD is utilized as an intensity measure, the numerical findings demonstrate that the soil nailing wall reaction is particularly sensitive to earthquake intensity measure (IM).

Analysis of the Behavior of Tiered Reinforced Soil Retaining Wall Considering the Offset Distance by Surcharge Load (상재하중 이격거리에 따른 다단식 보강토옹벽의 거동특성 분석)

  • Han, Jung-Geun;Kim, Ji-Sun;Hong, Ki-Kwon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 2007
  • Recently, the scale in the field of reinforced soil retaining wall has been grown up like tiered reinforced soil retaining wall. However, there have been increasing number of collapse accidents and large scale of collapse. The design manual adopted in the construction fields have been inconsistent in tiered reinforced soil retaining wall. Therefore, this study performed finite element analysis on 90 cases and analyzed characteristic behavior of lower wall which was one of the effect factors on the stability of tiered reinforced soil retaining wall. The facing displacement of each walls and the behavior of the whole ground were interpreted by the numerical analysis depending on the lower offset distance by the upper wall as well as the upper offset distance by the surcharge load. The results showed that the behavior of tiered reinforced soil retaining wall was differed by condition of surcharge load and each offset distance was found to be important factor.

Evaluation of Plastic Collapse Behavior for Multiple Cracked Structures (다중균열 구조물의 소성붕괴거동 평가)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan;Hwang, Seong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1813-1821
    • /
    • 2004
  • Until now, the 40% of wall thickness criterion, which is generally used for the plugging of steam generator tubes, has been applied only to a single cracked geometry. In the previous study by the authors, a total number of 9 local failure prediction models were introduced to estimate the coalescence load of two collinear through-wall cracks and, then, the reaction force model and plastic zone contact model were selected as the optimum ones. The objective of this study is to estimate the coalescence load of two collinear through-wall cracks in steam generator tube by using the optimum local failure prediction models. In order to investigate the applicability of the optimum local failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two collinear through-wall cracks in steam generator tube were carried out. Thereby, the applicability of the optimum local failure prediction models was verified and, finally, a coalescence evaluation diagram which can be used to determine whether the adjacent cracks detected by NDE coalesce or not has been developed.

Analysis of Failure Behavior for Thin Cylinder Pressure Vessel with Corrosion (부식된 얇은 원통 압력용기의 파손 거동 해석)

  • Yoon, Ja-Moon;Choi, Moon-Oh;Ahn, Seok-Hwan;Nam, Ki-Woo;Ando, Katoji
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.230-232
    • /
    • 2006
  • Failure behaviors of thin cylinder with corrosion are very important for the integrity of boiler and pressure vessel system. In this study, FEM with internal pressure are conducted on 1000 mm diameter (length 3000 mm and thickness, 5.9 mm) SS400 carbon steel. Failure behaviors of locally wall thinned cylinders were calculated by elasto-plastic analysis using finite element method. The elasto-plastic analysis was performed by FE code ANSYS. We simulated various types of local wall thinning that can be occurred at cylinder surface due to corrosion. Locally wall thinned shapes were machined to be different in size along the circumferential or axial direction of straight cylinder. In case of local wall thinned length 30 mm, internal pressure, when the crack initiation and the plastic collapse occur, didn't decrease dramatically even though local wall thinned depth was deep. In 400 mm, the more local wall thinned depth is deep, the more internal pressure decreased dramatically. In degraded materials, crack is easily initiation but plastic collapse was difficult.

  • PDF

Numerical Simulation for Prediction of Existing Cavity Location on Earthquake-Induced Building Collapse (지진에 의한 건축물 붕괴 시 매몰공동 위치 예측에 관한 수치해석 사례 연구)

  • Jung, Jahe;Park, Hoon;Kim, Kwang Yeom;Shin, Hyu-Soung
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.613-621
    • /
    • 2015
  • The most urgent measure to be taken for a rapid rescue when a building collapse happens is to designate or predict a possible location where human beings are alive. It is, however, very difficult to find and correctly designate such cavities by conventional geophysical survey due to a pile of debris of building members. In this study, the simulation of building collapse induced by an earthquake was conducted to predict forming pattern of a existing cavities. The simulation cases included the influence of structure wall existence and height of building. Three types of building structure: five-story, ten-story and fifteen-story were prepared as a simulation case. In the case of high building, a collapse range on the inside of the building increased consequently lowering the possibility of lifeguard cavern forming. In addition, when a wall exists in the basement floor, the possibility that existing cavities could be formed increased compared to the cases without wall.

Evaluation of Plastic Collapse Bending Load of Elbows with Thinning Area of Various Shapes (여러 형상의 감육부를 가진 엘보우의 소성붕괴 굽힘 하중의 평가)

  • Shin, Kyu-In;Lee, Sung-Ho;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Elbows with various shapes of local wall thinning were numerically analyzed by finite element method to get load-displacement curves and the maximum loads. Results were compared with the experimental data obtained by another study. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending loads. Two types of bending loads were considered such as elbow opening mode and elbow closing mode. Also, two different wall thinning geometries were modeled. Wall thinning area located extrados or intrados of elbow inner surface was considered. Longitudinal and circumferential lengths of the thinning area and the thinned thickness were varied for analysis. The results showed that the maximum load of the wall-thinned elbow decreased with increasing of the circumferential thinning length and the thinned thickness in both of extrados and intrados thinning locations in both loading types. The maximum load obtained by the analysis were in good agreement with the experimentally measured maximum load with the same wall thinning type and dimensions. This supports accuracy of the analysis results obtained in this study.