• 제목/요약/키워드: walking velocity

검색결과 279건 처리시간 0.026초

만성 뇌졸중 환자의 지역사회 보행: 다섯 보행 조건의 비교 (Community ambulation in patients with chronic post-stroke hemiparesis : Comparison of walking variables in five different community situations)

  • 황은옥;오덕원;김선엽
    • 대한물리치료과학회지
    • /
    • 제16권1호
    • /
    • pp.31-39
    • /
    • 2009
  • Background: Community ambulation has been recently recognized as one of the most essential factors of activities of daily living in patients with post-stroke hemiparesis. This study aimed to compare walking velocity and step number in 5 community situations in patients with post-stroke hemiparesis. Methods: Ten chronic stroke patients volunteered for this study. The main variables analyzed were walking speed and step number, and these were measured in 5 different community situations: a physical therapy room, a parking lot, a bank, a crosswalk, and a hospital lobby. The measurements obtained for walking in the physical therapy room were measured using a 10m walk test and were used as baseline data for comparison with each option. The ambulation distance was set at 300m for the parking lot and the bank and 150m for the crosswalk and hospital lobby. For data analysis, walking speed and step number were standardized with the distance options of each ambulation. Results: Compared to the walking speed in the physical therapy room, those in the other situations, except for the parking lot, were significantly different (p<.05). Moreover, there were significant differences in the speeds between the bank and the parking lot and between the parking lot and the crosswalk (p<.05). Compared to the step number in the physical therapy room, those in all situations except for the crosswalk were significantly different (p<.05). Further, there was a significant difference in the step number between the bank and the crosswalk (p<.05). Conclusion: The walking ability of patients with hemiparesis in real environments within a community could be different from that in a physical therapy room. Therefore, the evaluation of walking should be performed in a variety of community situations.

  • PDF

신 워킹 전문화의 생체역학적 기능성 평가 (The Biomechanical Evaluation of New Walking-shoes)

  • 김의환;정재욱;임정
    • 한국운동역학회지
    • /
    • 제16권2호
    • /
    • pp.193-205
    • /
    • 2006
  • This study was to analysis the kinematic and kinetic differences between new walking shoe(NWS : RYN) and general walking shoe(GWS). The subjects for this study were 10 male adults who had the walking pattern of rearfoot shrike with normal foot. The movement of one lower leg was measured using plantar pressure and Vicon Motion Analysis Program(6 MX13 and 2 MX40 cameras : 100 f / s) while the subjects walked at the velocity(1.5m/s. on 2m).. The results of this study was as follows : 1. The NWS was better than the GWS that caused injuries such as adduction, abduction and pronation are reduced While walking on a perpendicular surface, the landing angle and the knees angles were extensive which makes walking more safe which reduces anxiety and uneasiness. 2. The bottom of the NWS were now made into a more circular arch which supports the weight of the body and reduces the irregular angles when wearing GWS. This arch made the supporting area more wide which made the upholding the trunk of the body more effective. The whole bottom of the foot that supports the weight is more flexible in addition, increases the safeness of walking patterns and the momentum of the body. 3. The moment the heel of the foot of the NWS touch the ground, the range of the pressure were partially notable and the range of the pressure on the upper part of the thigh were dispersed The injuries that occurred while walking. primary factors when a shock related injuries are reduced Judgements of the impacts of the knees and the spinal column dispersing could be made.

FES와 부분적인 체중지지를 결합한 지상보행훈련이 만성 뇌졸중 환자의 보행과 균형에 미치는 영향 (Effect of the Combined Use of FES and Over ground Walking with Partial Body-Weight Support on Walking and Balance Competency in Patients with Chronic Strokes)

  • 왕계석;윤세원;조운수;김용남
    • 대한임상전기생리학회지
    • /
    • 제10권1호
    • /
    • pp.15-22
    • /
    • 2012
  • Purpose : We investigated the effects of the combined use of FES and over ground walking with partial body-weight support (PBWS) on walking function and balance control in people with chronic strokes. Methods : Twenty-seven people who were ambulatory after chronic strokes were evaluated. The exercise's intervention consisted of the combined use of FES and over ground walking with PBWS and general exercise groups. The FES + PBWS group and general exercise group consisted on a-20-minute session per day, 3 times a week during a 4 week period. The evaluation was carried out before, after, and two weeks after the exercise intervention. Outcome measures were a 6 Minute Walk Test, 6-Meter walk Test, Timed Up and Go Test, and a Balance Test, measured before and after the exercise interventions at a-2 week follow up. Results : The endurance was significantly increased in both the FES+PBWS group and general exercise group (p<0.05). Significant increase on the gait velocity was observed in both the FES+PBWS group and general exercise group (p<0.05). The TUG was significantly different in both the FES + PBWS group and general exercise group (p<0.05). However there were no differences in both the between-group & interaction. The stability index was significantly different in both the FES + PBWS group and general exercise group (p<0.05). Conclusion : In conclusion, the combined use of FES and over ground walking with PBWS led to an improvement in walking function and balance control. Thus, it is possible to combine the use of FES and over ground walking with PBWS for physical therapy intervention to improve walking function and balance control. It is suggested to apply this intervention in the clinical field.

가상현실 대화용 가상걸음 장치의 지능제어 (Intelligent Control of a Virtual Walking Machine for Virtual Reality Interface)

  • 윤정원;박장우;류제하
    • 제어로봇시스템학회논문지
    • /
    • 제12권9호
    • /
    • pp.926-934
    • /
    • 2006
  • This paper proposes intelligent control of a virtual walking machine that can generate infinite floor for various surfaces and can provide proprioceptive feedback of walking to a user. This machine allows users to participate in a life-like walking experience in virtual environments with various terrains. The controller of the machine is implemented hierarchically, at low-level for robust actuator control, at mid-level fur platform control to compensate the external forces by foot contact, and at high-level control for generating walking trajectory. The high level controller is suggested to generate continuous walking on an infinite floor for various terrains. For the high level control, each independent platform follows a man foot during the swing phase, while the other platform moves back during single stance phase. During double limb support, two platforms manipulate neutral positions to compensate the offset errors generated by velocity changes. This control can, therefore, satisfy natural walking conditions in any direction. Transition phase between the swing and the stance phases is detected by using simple switch sensor system, while human foot motions are sensed by careful calibration with a magnetic motion tracker attached to the shoe. Experimental results of walking simulations at level ground, slope, and stairs, show that with the proposed machine, a general person can walk naturally on various terrains with safety and without any considerable disturbances. This interface can be applied to various areas such as VR navigations, rehabilitation, and gait analysis.

경 두개 직류자극이 뇌졸중 환자의 시간적, 공간적 보행능력에 미치는 영향 (Effect of Trans cranial Directed Current Stimulus on Temporal and Spatial Walking Capacity for Hemiparalysis Patients)

  • 이연섭;전현주
    • 대한물리치료과학회지
    • /
    • 제29권3호
    • /
    • pp.75-84
    • /
    • 2022
  • Background: This study was to investigate the effect of non-invasive transcranial direct current stimulation due to hemiplegic patients due to stroke on temporal and spatial gait ability. Design: Randomized sham controlled trial. Methods: For the study method, 42 patients with hemiplegia due to stroke were randomly assigned to 14 patients each, and the general walking group, tDCS walking group, and tDCS (sham) walking group were subjected to 5 times a week, 30 minutes a day, and 6 weeks. In the temporal gait variables of hemiplegic patients due to stroke, the effect of the gait time, gait cycle, single support, double support, swing phase, stance phase, gait speed, cadence were measured. In spatial variables, one step length and one step length were measured. Results: As a result of the study, the EG group significantly increased in the step time, gait velocity, and cadence of the paralysis side in the comparison of temporal walking variables between groups according to the application of tDCS of walking ability in hemiplegic patients due to stroke patients(p<.05). In the change in spatial walking variables between groups according to the application of tDCS, the step length and stride length of the EG group showed a significant increase. Both the comparison of temporal and spatial symmetry walking variables between groups according to tDCS application was not significant(p>.05) Conclusion: As a result, tDCS has an effective effect on the improvement of the gait ability of stroke patients. In particular, it is an effective method of physical therapy that can improve the cadence and speed of gait, which can be combined with the existing gait training to effectively increase the gait of hemiplegia due to stroke patients.

Effects of an Elastic AFO on the Walking Patterns of Foot-drop Patients with Stroke

  • Hwang, Young-In
    • 대한물리의학회지
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2020
  • PURPOSE: Many patients with stroke have difficulties in walking with foot-drop. Various types of ankle-foot orthoses (AFOs) have been developed, but their weight needs to be reduced with the assistance of the ankle dorsiflexor. Therefore, an elastic AFO (E-AFO) was devised that not only improves the stability and flexibility of the ankle but also assists with ankle dorsiflexion while walking. This study examined the effects of an E-AFO, on the walking patterns of foot-drop patients with stroke. METHODS: Fourteen patients walked with and without an E-AFO, and the gait parameters were assessed using the GAITRite system. The spatiotemporal data on the gait patterns of stroke patients with foot-drop were compared using paired t-tests; the level of statistical significance was set to α<.05. RESULTS: No significant differences were observed in the velocity (p=.066) and affecte+d step length (p=.980), but the affected and less-affected stance (p=.022, p=.002) and swing time (p=.012, p=.005) were significantly different. The E-AFO produced a significant difference in the less-affected step length (p=.032). CONCLUSION: The E-AFO has a significant effect on the walking patterns of individuals with foot-drop and stroke. The E-AFO could be a useful assistive device for gait training in stroke patients.

ICF를 적용한 뇌졸중 환자의 문서 기록과 중재 전략의 실례 (A case report of the intervention strategy & documentation in a patient with post stroke applied a International Classification of Functioning, Disability and Health)

  • 이선의;김태윤
    • PNF and Movement
    • /
    • 제8권2호
    • /
    • pp.57-67
    • /
    • 2010
  • Background and Purpose : Many Physical therapist are inclined to communicate less effectively each other because they hardly use the standard terminology. The purposes of this case report are (1) to apply ICF-based documentation in evaluation (2) to submit the strategy of intervention process to improve the ability of walking short distance of the client who has post-stroke. Description : The client was 44-years-old man with hemiplegia who was in 1 month post-stroke problems were diagnosed while applying the ICF core set. The goals agreed with client were independently walking short distance, stairs and obstacles. To come up with the intervention strategy, hypothesis was set and 4 weeks of intervention was carried out after proposing the short goal and detailed purpose. Outcome : The client's performance in walking short distance and confidence were increased after impairment focused intervention, that are improved in walking velocity, endurance, supporting ability in lower limbs, rhythmical movement in upper limbs and the coordination of both limbs. Activities focused intervention also enhanced the ability in climbing steps and walking around obstacles. Conclusion : The decided hypothesis and goal that are to solve the problems the client faced were remarkably meaningful.

  • PDF

2족 보행 로봇을 위한 허용 ZMP (Zero Moment Point) 영역의 활용을 통한 에너지 효율적인 기준 보행 궤적 생성 (Energy-Efficient Reference Walking Trajectory Generation Using Allowable ZMP (Zero Moment Point) Region for Biped Robots)

  • 신혁기;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.1029-1036
    • /
    • 2011
  • An energy-efficient reference walking trajectory generation algorithm is suggested utilizing allowable ZMP (Zero-Moment-Point) region, which maxmizes the energy efficiency for cyclic gaits, based on three-dimensional LIPM (Linear Inverted Pendulum Model) for biped robots. As observed in natural human walking, variable ZMP manipulation is suggested, in which ZMP moves within the allowable region to reduce the joint stress (i.e., rapid acceleration and deceleration of body), and hence to reduce the consumed energy. In addition, opimization of footstep planning is conducted to decide the optimal step-length and body height for a given forward mean velocity to minimize a suitable energy performance - amount of energy required to carry a unit weight a unit distance. In this planning, in order to ensure physically realizable walking trajectory, we also considered geometrical constraints, ZMP stability condition, friction constraint, and yawing moment constraint. Simulations are performed with a 12-DOF 3D biped robot model to verify the effectiveness of the proposed method.

보행용 전문 신발과 일반 운동화의 운동역학적 비교 분석 (Sport biomechanical comparative analyses between general sporting shoe and functional walking shoe)

  • 최규정;권희자
    • 한국운동역학회지
    • /
    • 제13권2호
    • /
    • pp.161-173
    • /
    • 2003
  • This study was performed to investigate the kinematic and kinetic differences between functional walking shoe(FWS) and general sports shoe(GSS). The subjects for this study were 4 male adults who had the walking pattern of rearfoot strike with normal feet. The movement of one lower leg was measured using force platform and 3 video cameras while the subjects walked at the velocity of 2/1.5 m/s. The findings of this study were as follows 1. The angle of lower leg-ground and angle of knee with FWS was greater than with GSS at the moment of strike the floor and the moment of second peak ground reaction force. The decreasing rate of angle of ankle was smaller in FWS from the strike phase to the second peak ground reaction force. These mean upright walking and round walking along the shoe surface. 2. The maximal Increased angle of Achilles tendon and the minimal decreased angle of rearfoot were smaller in FWS very significantly(p<0.001). Thus FWS prevent the excessive pronation of ankle and have good of rear-foot control. 3. The vortical ground reaction force and the rate of it to the BW were smaller in FWS statistically(p<0.001). The loading rate was smaller in FWS, too, and thess represent the reduction of load on ankle joint and prevention of injuries on it.