• Title/Summary/Keyword: walking robots

Search Result 170, Processing Time 0.023 seconds

A Study on Infra-Technology of RCP Mobility System

  • Kim, Seung-Woo;Choe, Jae-Il;Im, Chan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1435-1439
    • /
    • 2004
  • Most recently, CP(Cellular Phone) has been one of the most important technologies in the IT(Information Tech-nology) field, and it is situated in a position of great importance industrially and economically. To produce the best CP in the world, a new technological concept and its advanced implementation technique is required, due to the extreme level of competition in the world market. The RT(Robot Technology) has been developed as the next generation of a future technology. Current robots require advanced technology, such as soft computing, human-friendly interface, interaction technique, speech recognition, object recognition etc. unlike the industrial robots of the past. Therefore, this paper explains conceptual research for development of the RCP(Robotic Cellular Phone), a new technological concept, in which a synergy effect is generated by the merging of IT & RT. RCP infra consists of $RCP^{Mobility}$ $RCP^{Interaction}$, $RCP^{Integration}$ technologies. For $RCP^{Mobility}$, human-friendly motion automation and personal service with walking and arming ability are developed. $RCP^{Interaction}$ ability is achieved by modeling an emotion-generating engine and $RCP^{Integration}$ that recognizes environmental and self conditions is developed. By joining intelligent algorithms and CP communication network with the three base modules, a RCP system is constructed. Especially, the RCP mobility system is focused in this paper. $RCP^{Mobility}$ is to apply a mobility technology, which is popular robot technology, to CP and combine human-friendly motion and navigation function to CP. It develops a new technological application system of auto-charging and real-world entertainment function etc. This technology can make a CP companion pet robot. It is an automation of human-friendly motions such as opening and closing of CPs, rotation of antenna, manipulation and wheel-walking. It's target is the implementation of wheel and manipulator functions that can give service to humans with human-friendly motion. So, this paper presents the definition, the basic theory and experiment results of the RCP mobility system. We confirm a good performance of the RCP mobility system through the experiment results.

  • PDF

The Effects of Robot-Assisted Rehabilitation on the Gait Ability of Stroke Patients with Hemiplegia: A Mixed Methods Research Study (보행로봇 재활치료가 편마비 뇌졸중 환자의 보행능력에 미치는 효과: 혼합연구설계)

  • Park, Min Gyeong;Ha, Yeong Mi;Cho, Hyung Je;Jeon, Mi Yang
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.1
    • /
    • pp.72-82
    • /
    • 2021
  • Purpose: This study used a mixed methods research design in an attempt to verify the effects of robot-assisted rehabilitation on the gait ability of stroke patients with hemiplegia, and thereby further understand the benefits and challenges of stroke patients' experiences relying on robot-assisted rehabilitation. Methods: An exploratory sequential mixed methods study design was used in order to combine both quantitative and qualitative data. For the quantitative data collection, a total of 30 stroke patients with hemiplegia were recruited from one rehabilitation hospital. Qualitative data were collected through individual interviews using semi-structured questionnaires for a group of 15 patients who were currently undergoing robot-assisted rehabilitation. The data were analyzed through qualitative content analysis. Results: As a result of the quantitative analysis, there were significant differences between the two groups in terms of daily living activity patterns, total number of steps, and average walking speed. As a result of the qualitative analysis, the four main themes derived consisted of, 'curiosity about the usage of robot-assisted rehabilitation,' 'pleasure experienced while using the robots,' 'insufficient information about robots,' and 'a lack of education about robot-assisted rehabilitation.' Conclusions: Robot-assisted rehabilitation had a significant effect on the walking ability of stroke patients with hemiplegia. Additionally, stroke patients with hemiplegia experienced difficulty during the course of their robot-assisted rehabilitation, due to a lack of sufficient information on correct usage techniques. These quantitative and qualitative findings could provide the basic foundation for the development of an educational program on robot-assisted rehabilitation.

A Study on Intelligent Control of Real-Time Working Motion Generation of Bipped Robot (2족 보행로봇의 실시간 작업동작 생성을 위한 지능제어에 관한 연구)

  • Kim, Min-Seong;Jo, Sang-Young;Koo, Young-Mok;Jeong, Yang-Gun;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, we propose a new learning control scheme for various walk motion control of biped robot with same learning-base by neural network. We show that learning control algorithm based on the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multi layer back propagation neural network identification is simulated to obtain a dynamic model of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The biped robots have been received increased attention due to several properties such as its human like mobility and the high-order dynamic equation. These properties enable the biped robots to perform the dangerous works instead of human beings. Thus, the stable walking control of the biped robots is a fundamentally hot issue and has been studied by many researchers. However, legged locomotion, it is difficult to control the biped robots. Besides, unlike the robot manipulator, the biped robot has an uncontrollable degree of freedom playing a dominant role for the stability of their locomotion in the biped robot dynamics. From the simulation and experiments the reliability of iterative learning control was illustrated.

Low-Power Walking Trajectory Generation of Biped Robot and Its Realization (이족 로봇의 저전력 보행 궤적 생성 및 구현)

  • Park Sang-Su;Kim Byung-Soo;Oh Jae-Joon;Choi Yoon-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.443-448
    • /
    • 2006
  • In this paper, a novel method is proposed for generating the low-power and stable walking trajectory of biped robots, and then a biped robot with 25 DOFs(degrees of freedom) is designed and implemented for the realization of the low-power walking trajectory generated by the proposed method. In our method, first a stable VPCG(vertically projected center of gravity) trajectory is generated, and then the trajectories of ankle and pelvis of a biped robot are planned to follow the preplanned stable VPCG trajectory, which produces a waking pattern without bending its knees and enables a biped robot to walk with less power consumption. On the other hand, a biped robot implemented in this paper has the mechanical structure of foot that enables a biped robot to support on the ground well, and the mechanical structure of pelvis that enables a biped robot to move flexibly. From results of the walking experiment and power consumption measurement, it was confirmed that the proposed method can generate the more stable and flexible trajectory with less power consumption compared with the existing methods which do not use the ankle of a biped robot.

Emergency Alarm Service for the old and the weak by Human Behavior Recognition in Intelligent Space (지능공간에서의 인간행동 인식을 통한 노약자 및 환자의 위급상황 알람 서비스)

  • Lee, Jeong-Eom;Kim, Joo-Hyung;Lee, Hyun-Gu;Kim, Sang-Jun;Kim, Dae-Hwan;Park, Gwi-Ta
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.297-303
    • /
    • 2007
  • In this paper, we discuss a service to give alarm in the case of emergency for the old and the weak by human behavior recognition in Intelligent Space. Our Intelligent Space consists of mobile robots, sensors and agents. And these components are connected to network framework. Agent analyzes data acquired from networked sensors and determines task of robots and a space to provide a service for humans. In our emergency alarm service, human behavior recognition service module analyzes accelerometer data obtained from body-attached human behavior sensing platform, and classifies into four basic human behavior such as walking, running, sitting and falling-down. For the old and the weak, falling-down behavior may bring about dangerous situations. On such an occasion, agent executes emergency alarm service immediately. And then a selected mobile robot approaches fallen person and sends images of the person to guardians. In this paper, we set up a scenario to verify the emergency alarm service in Intelligent Space, and show feasibility of the service from our simulation experiments.

  • PDF

Joint Position Control using ZMP-Based Gain Switching Algorithm for a Hydraulic Biped Humanoid Robot (유압식 이족 휴머노이드 로봇의 ZMP 기반 게인 스위칭 알고리즘을 이용한 관절 위치 제어)

  • Kim, Jung-Yup;Hodgins, Jessica K.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1029-1038
    • /
    • 2009
  • This paper proposes a gain switching algorithm for joint position control of a hydraulic humanoid robot. Accurate position control of the lower body is one of the basic requirements for robust balance and walking control. Joint position control is more difficult for hydraulic robots than it is for electric robots because of an absence of reduction gear and better back-drivability of hydraulic joints. Backdrivability causes external forces and torques to have a large effect on the position of the joints. External ground reaction forces therefore prevent a simple proportional-derivative (PD) controller from realizing accurate and fast joint position control. We propose a state feedback controller for joint position control of the lower body, define three modes of state feedback gains, and switch the gains according to the Zero Moment Point (ZMP) and linear interpolation. Dynamic equations of hydraulic actuators were experimentally derived and applied to a robot simulator. Finally, the performance of the algorithm is evaluated with dynamic simulations.

Trajectory Generation and Dynamic Control of Planar Biped Robots With Curved Soles

  • Yeon Je-Sung;Kwon O-Hung;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.602-611
    • /
    • 2006
  • This paper proposes a locomotion pattern and a control method for biped robots with curved soles. First, since the contact point of a supporting leg may arbitrarily move back and forth on the ground, we derived the desired trajectory from a model called the Moving. Inverted Pendulum Model (MIPM) where the Zero Moment Point (ZMP) exists at the supporting point and can be moved intentionally. Secondly, a biped robot with curved soles is an under-actuated system since the supporting point contacting with a point on the ground has no actuator during the single supporting phase. Therefore, this paper proposes a computed-torque control for this under-actuated system using decoupled dynamic equations. A series of computer simulations with a 7-DOF biped robot with curved soles shows that the proposed walking pattern and control method are effective and allow the biped robot to walk fast and stably, and move more like human beings. Also, it is shown that the curved sole shape has superior energy consumption compared to flat soles, and greater efficiency in ascending and descending the stairs.

SPOT Robot Hardware and Software Performance Analysis for Autonomous and Unmanned Construction Site Management System (건설 현장 관리 자율 및 무인화 시스템을 위한 SPOT 로봇 하드웨어 및 소프트웨어 성능 분석)

  • Park, Bong-Jin;Kim, Do-Keun;Jang, Se-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.221-222
    • /
    • 2023
  • The purpose of this study is to analyze the applicability and limitations of SPOT robots in the construction industry. The SPOT robot, which is being introduced to construction sites for smart construction with the progress of the 4th industrial revolution, is shaped like a four-legged dog and is equipped with various sensors for data collection and autonomous driving. In this study, hardware and software were analyzed, such as the size of the SPOT robot, mobility on slopes and heights, operating environment, and software functions that can collect data with a sensor weighing up to 14 kg. In addition, while the SPOT robot operates in a construction environment, performance such as stability, accuracy, signal connection distance, and obstacle avoidance are evaluated, and the applicability and limitations of the SPOT robot in the construction industry are analyzed. Based on this analysis, the purpose of this study is to evaluate when and how SPOT robots can be effectively used at construction sites, identify limitations, and derive contributions and improvements for the construction industry.

  • PDF

Optimal Force Distribution for Compliance Control of Multi-legged Walking Robots (다각 보행로보트의 순응 제어를 위한 힘의 최적 분배)

  • Ra, In-Hwan;Yang, Won-Young;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.874-876
    • /
    • 1995
  • Force and compliance control has been used in the control of legged walking vehicles to achieve superior terrain adaptability on rough terrains. The compliance control requires distribution of the vehicle load over the supporting legs. However, the constraint equations for ground reaction forces of supporting legs are generally underdetermined, allowing an infinite number of solutions. Thus, it is possible to apply an optimization criteria in solving the force setpoint problem. It has been observed that the previous force setpoint optimization methods sometimes cause a system stability problem and/or the load distribution among supporting legs is not well balanced due to a memory effect on the solution trajectory, This paper presents an iterative force setpoint method to solve this problem using an interpolation technique. By simulation it was shown that an excessive load unbalance among supporting legs and the memory effect in the force trajectory are alleviated much with the proposed method.

  • PDF

Zigzag Gait Planning of n Quadruped Walking Robot Using Geometric Search Method (기하학적 탐색을 이용한 4각 보행로봇의 지그재그 걸음새 계획)

  • Park, Se-Hoon;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.142-150
    • /
    • 2002
  • This paper presents a systematic method of the zigzag gait planning for quadruped walking robots. When a robot walks with a zigzag gait, its body is allowed to move from side to side, while the body movement is restricted along a moving direction in conventional continuous gaits. The zigzag movement of the body is effective to improve the gait stability margin. To plan a zigzag gait in a systematic way, the relationship between the center of gravity(COG) and the stability margin is firstly investigated. Then, new geometrical method is introduced to plan a sequence of the body movement which guarantees a maximum stability margin as well as monotonicity along a moving direction. Finally, an optimal swing-leg sequence is chosen for a given arbitrary configuration of the robot. To verify the proposed method, computer simulations have been performed for both cases of a periodic gait and a non-periodic gait.