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Trajectory Generation and Dynamic Control of Planar Biped
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This paper proposes a locomotion pattern and a control method for biped robots with curved

soles. First, since the contact point of a supporting leg may arbitrarily move back and forth on
the ground, we derived the desired trajectory from a model called the Moving.Inverted Pen-
dulum Model (MIPM) where the Zero Moment Point (ZMP) exists at the supporting point and
can be moved intentionally. Secondly, a biped robot with curved soles is an under-actuated
system since the supporting point contacting with a point on the ground has no actuator during

the single supporting phase. Therefore, this paper proposes a computed—torque control for this

under-actuated system using decoupled dynamic equations. A series of computer simulations
with a 7-DOF biped robot with curved soles shows that the proposed walking pattern and
control method are effective and allow the biped robot to walk fast and stably, and move more
like human beings. Also, it is shown that the curved sole shape has superior energy consumption
compared to flat soles, and greater efficiency in ascending and descending the stairs.
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1. Introduction

Most researchers have studied walking biped
robots with flat soles in various artificial envi-
ronments. However, these biped robots have an
unnatural, restrictive and inefficient walking mo-
tion when their soles touch the ground. Therefore,
some researchers have studied human-like walk-
ing motions using biped robots with a toe joint in
each foot since toes have a very important role in
the walking pattern of human beings (Rose and
Gamble, 1981). Specifically, the function or role
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of a toe’s joints is summarized in three aspects.
One is utilizing them to speed up walking, ano-
ther is using them to enable a biped robot to go
up higher steps, and the other is using them to
make a whole-body action where the knee joints
can contact the ground.

In previous works, robotic toe joints were used
as both passive joints and active joints. In case of
a biped robot with flat soles attached with passive
toe joints, its heel contacts first and then its toe
takes off as though its toe-tip is hinged to the
ground (Nishiwaki et al., 2002). This is called
ballistic walking like a projectile moving through
space during a single supporting phase (Schiehlen,
2005) and has non-holonomic constraints. Next,
biped robots with flat soles attached with active
toe joints walk more actively (Takahashi and
Kawamura, 2002). However, they require more
actuators and have many difficult problems, such
as the increase in weight, actuation redundancy
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and trajectory generation.

On the other hand, some researchers have stu-
died biped robots with curved soles that do not
need to add any additional actuators: They can
move into natural and human-like walking pat-
terns using curved soles that cannot be fixed on
the ground, but must be rotated continuously from
their heel to their toe in order to walk forward.
This approach was first suggested by McGeer. He
suggested passive dynamic walking for biped ro-
bots with curved soles, that is, given only a down-
hill slope as a source of energy, a human-like pair
of legs settles into a natural gait generated by
passive interaction of gravity and inertia (McGeer,
1990a ; 1990b). Another work proposed a self-
excited biped walking mechanism (One et al,
2000). The curved soles can roll smoothly and
steadily along a level surface, maintaining any
speed without loss of energy during the support-
ing phase. However, these works cannot be ap-
plied to multi-body robots walking on different
surfaces.

In general, there are some problems in the
walking control of many DOF biped robots with
curved soles on various surfaces. In the single
supporting phase, the supporting foot contacting
with one point on the ground has no actuator.
Thus, the number of actuators is smaller than that
of independent configurable variables to control
the biped robot. Hence, the biped robot is limited
by an under-actuated system. Therefore, the prob-
lem of under-actuatiom must be solved in order
to control a biped robot with curved soles.

One method for the control law of an under-
actuated biped robot is based on the definition of
the reference trajectory for outputs, not as a func-
tion of time, but as a function of a configurable
variable independent of the outputs (Aoustin and
Formal’sky, 1999). With such a control, the con-
figuration of the robot at the impact moment is
replaced by the desired configuration. This leads
to a velocity discontinuity since the actual veloci-
ties can differ from the desired velocities. Next,
parameterized reference trajectories are introduc-
ed. Thus, one derivative of the parameter satisfied
with some constraints from the relation between
the feet and the ground is used as a supplementary

input (Chevallereau and Adouane, 2002). How-
ever, these works do not consider the stable
walking for multi-body biped robots in various
artificial environments.

This paper proposes a computed-torque con-
trol for this under-actuated system to control
using the decoupled dynamic equations. With
such a control, one of independent configurable
variables is controlled indirectly. And consider-
ing that a supporting foot rotates on the ground,
the desired trajectory is derived based on the
Moving Inverted Pendulum Model (MIPM). The
trajectories are modified to prevent a velocity dis-
continuity at the contacting moment of a swinging
foot.

This paper is organized as follows: Section 2
describes the model of a biped robot with curved
soles and the dynamic equations. In order to get
the desired trajectory of a biped robot with curved
soles, we have made a model called the Moving
Inverted Pendulum Model (MIPM) in Sec. 3. It is
similar to the Linear Inverted Pendulum Mode
(Kim and Park, 1999; Park and Cho, 2000).
However, robot’s supporting point moves hori-
zontally. Section 4 describes the control variables
and modified dynamic equations to solve the un-
der-actuated problems. The effectiveness of the pro-
posed control through various computer simula-
tions of a biped robot with curved soles is shown
in Sec. 5, followed by conclusions in Sec. 6.

2. Dynamics of a Biped Robot
and Its Environment

2.1 Dynamics of a biped robot

A walking cycle is divided into two phases: a
single support phase and an instantaneous double
supporting phase. Figure 1 shows the structure of
a biped robot with curved soles in the sagittal
plane. This robot is similar to a 7-DOF biped
robots with flat soles. It is composed of a trunk
and two identical legs. Each leg is composed of
three links that include curved sole. The ankles,
knees and hip are one-degree-of-freedom rota-
tional joints. We assume that all links are massive
and rigid. And the supporting point of a sup-
porting foot does not rebound and slip.
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Fig. 1 A biped robot with curved soles and its
coordinates

The vector g=[61 & & & 6 G &) describes
the configuration of a biped robot in the absolute
coordinates. And the mass and the moment of
inertia of each link are m; and I, respectively.
The length to the center of mass is d; and the
radius of the curved sole is R.

Dynamic equations for this model are obtained
by solving Lagrange’s equation. Lagrange’s equa{-
tion relates to the angular acceleration of each
joint and the applied torque of each actuator;
then it is convenient to obtain a nonlinear state
space model, taking the angular positions and
velocities as state variables.

In the single support phase, the dynamic equa-
tion can be written as

M(q)i+C(q, §)¢+G(q)=PT (1)

where M (7X7) is the inertia matrix, C(7X7) is
the vector related to the Coriolis and centrifugal
forces, and G(7X1) is the vector of gravity ef-
fects. T is a (6X1) torque vector and P is a
(7x6) transformation matrix.
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Fig. 2 Environment model

For the instantaneous double supporting phase,
the dynamic model can be written as

M(g)i+Clq, §)4+G(q) +J"F=PT (3)

where J is the Jacobian matrix and F is the
external force vector.

2.2 Environment model

In order to compute the vertical force when the
foot of the freely swinging leg makes an initial
contact with the ground, we used the nonlinear
spring-damper model, proposed by Park and
Kwon (2001), as an environment model for a
biped robot with curved soles as shown in Fig. 2.
Where (%6, 25) and (x7, z7) denote the position of
the ankle and the position of the contact point,
respectively.

An environment model is composed of a non-
linear damper and a linear spring at the support-
ing point. The vertical force, />, generated into the
vertical direction is expressed by

fz(az) :%a’kz(53> 6z(§z+ kz(&e) Sz (4)

where &, is the amount of the deformation, £, (Jz)
is the stiffness, and @ is a constant that defines
the relation between the coefficient of restitution
and the impact velocity.

Generally, in order to provide more realistic
environmental forces, the springs have nonlinear
stiffness characteristics such as

kz<32)=ko|:l+0.lt 3(—’%)}

for 6z>0

(5)

where A, is the stiffness associated with the spring
model along the z-axis, and #, is the maximum
deformable height.
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3. Trajectory Generation

Commonly, periodic walking trajectories of a
biped robot are derived from the Linear Inverted
Pendulum Mode (LIPM) or the Gravity-Com-
pensated Inverted Pendulum Mode (GCIPM)
under the assumption that the ZMP exists in the
center of a robot foot in the supporting phase. It
is assumed that most of the weight of the biped
robot is concentrated on one or two particles and
the contact point is fixed. And the trajectories
with respect to the center of mass and a swing foot
are specified.

For biped robots with curved soles, the sup-
porting point moves into the horizontal direction.
Thus, we do not use the LIPM or the GCIPM to
generate the trajectory of the biped robot with
curved soles. Therefore, we propose the new tra-
jectory called the Moving Inverted Pendulum
Model (MIPM). It has an advantage that we can
move the ZMP position arbitrarily because the
supporting point of a supporting leg is the ZMP
position.

3.1 Moving inverted pendulum model
(MIPM) for the supporting leg

The MIPM is based on a simple biped model
that is approximated into one particle, assuming
that most of the weight of the biped robot is
concentrated on its hip link, but the supporting
point moves arbitrarily. Figure 3 shows the one-
particle model for the MIPM. Where Vectors 5,
and P, are the vector from the origin of the re-
ference frame, O, to the supporting point, A, and
the vector from the supporting point, A, to the
center of mass, M, respectively. And ¢ and g are
the slope angle of the center of mass about the
vertical axis and the gravity acceleration, respec-
tively.

Newton’s second law says that the sum of the
moments about O induced from all the forces
acting on the particle is equal to the rate of
change of the moment of momentum, or the
angular momentum, of the particle about O.

2Mo=Ho (6)

P=lx z], g=[0-g]

b= {xg z\]‘r, Py :"’[xz Z:]I B
Fig. 3 Moving Inverted Pendulum Model (MIPM)

The angular momentum with respect to the fixed
coordinate O as shown.in Fig. 3 is derived as

Ho=PxMP=(h+5) xM (Bt ()
If differentiating Eq. (7),

Ho= (it x M+ 5).
+ A+ 5a) XM (pr+ 1) (8)
=M[x1+xz, 21+22:| % [xl + i, 21+'Z‘2] T

where it is assumed that the robot moves only in
the sagittal plane and the height of the center of
mass remains constant ; 21=0, z=H,. Therefore,
the rate of change of the angular momentum is
derived as follows :

Ho=MH, (}1+5) 9
The moment about O is
M0=ﬁxM§—51XM§
=M (h+p) Xg—DMg
:M[x1+xz a+z]"x[0 ~g]"
—M[xl ZﬂTX[O —g]T=ngz

(10)

If inserting Eqs.(9) and (10) into Eq. (6), we get
a simple equation that describes the dynamic
motion along x-axis.

MH, (551'*’.56'2) =MgX2
(11)

N -3
it i Hzxz

where x; and x. are the functions of the slope
angle, ¢, from the kinematic relation. And it is
assumed that tan ¢ is almost equal to ¢ on con-
dition that ¢ is less than 7/10.

x1=x(0) + R ($(0) — )

xe=—Hytan px~H,d (| ¢|<7/10)
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where x (0) and $(0) is the initial values at time
t=0.

If inserting Eq. (12) into Eq.(11), a second-
order differential equation is obtained as follows :

d=d'. 0=\ iR 13

The corresponding general solution is

¢(t) =Cie" 4+ Ce™™
c=1{s0)+ 20 |, =180 _N_O)} (14)

2 ) w

Equation (14) should be satisfied with the re-
peatability conditions, that is, ¢(0)=—¢(T)
and $(0) =4 (T). Since locomotion is periodic,
and the speed and configuration of the left and
right legs at the end of the stride become identical
to those of the right and left legs respectively at
the beginning of the stride. Therefore, the initial
velocity of the slope angle can be found as
follows : .

40 =15 0p0) (15)

Therefore, desired trajectories, (X, Z), of the
center of mass are derived as

X=xi+tx2=x (0) +R(¢(O) _95) _Hz¢
=—(R+H) ¢+x:(0) + R$(0) (16)

Z=z+z=H;

where the desired vertical trajectory of the center
of mass is set to be constant in the process of
deriving the horizontal trajectory of the center of
mass. But for human-like, efficient walking, the
desired vertical trajectory of the center of mass
is used as the following equation (McMahon,
1984).

Z=H.+H, (1—cos (%))w(%t}
: 0<t<T

where S is the stride and T is the one step period.

3.2 Trajectory generation for the free leg

The foot trajectories with respect to the posi-
tion of the ankle joint, (xs, ), and the rotation
angle of the swing foot about the absolute coor-
dinates, 6y, are specified. First, ankle trajectories

Ag= A0,
Fig. 4 The relation between ¢ and fs in the MIPM

are used as follows :

27 (1) =xs—Scos{wst} (0<t<T)

zr (1) =%[1—cos{2wft}] wr=n/T (an

where /s is the maximum foot height and x5 is the
position of a supporting leg.

Based on the assumption that the rate of change
of the slope angle of the center of mass is equal
to the rate of change of the foot angle of the
supporting leg as shown in Fig. 4, the foot angle
fs of the supporting leg is derived as

Abs=A¢
Os=¢—$(0) + 65(0)
where 6s(0) and ¢(0) are initial values.
The foot angle of the swing leg, &y, is connected
continuously into. the foot angle of the supporting

leg, s, in order to walk periodically. Therefore,
we use a third order polynomial.

4,=At*+Bt*+Ct+D (19)

where this polynomial should be satisfied with

(18)

the continuity conditions.
60,(0) =6s(T), 6;(T)=65(0)
6+(0)=8+(T), 6,(T)=65(0)

3.3 Modified trajectory generation for the
free leg

A swing leg has initial errors at the start of

the supporting phase because a supporting point

has no actuator and rotates around a supporting
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Fig. 5 Modification of the swing leg trajectory

point on the ground, and this rotation makes the
supporting foot translate largely as shown in
Fig. 5. Where the subscript ‘ac’ and ‘de’ mean the
actual data and the desired data at n-th walking
cycle, respectively. These initial errors largely
don’t affect the stability if they exist inside the
limit range when a swing leg starts with the sup-
porting phase. But they become larger over the
limit range after some periods. Therefore, a swing
foot trajectory is modified to satisfy the initial
conditions at the moment the swing phase starts
with each step.

First, the swing leg trajectory (x7, 27) is modi-
fied from Eq. (16).

1 (8) =Haen—S [1—cos (wyt) ] §'=Tmel~een
(20)

2 (1) =% (1—cos Qwst) ] a)f=%

where Xg..» is the actual ankle position of a
supporting foot at »n-th step.

The modified foot angle of a swing leg, 67, is
connected continuously into the modified foot
angle of a supporting leg, 85, in order to walk

periodically. Similarly, we use a third order poly-
nomial.

G =At+Bt*+Ct+D (21)

where this polynomial should be satisfied with
the continuity conditions.

61/‘ (0) = 6ac,n ( T) , 07 ( T) = 0de,n+l (O>
0;‘ (O) = 9ac,n ( T) R 6} ( T) = 6.de,n+1 (O)

4. Control Design for the
Underactuated System

The sole of the supporting leg contacts the floor
as a point. This non-actuated point is a free joint
that cannot easily balance the robot’s body and

stabilize the robot’s motions. Thus, it is difficult
to control the body position and posture because
this system is an under-actuated system. The de-
gree of under-actuation is one. Therefore, this
paper presents a control method for this under-
actuated system to track cyclic reference trajec-
tories, based upon thg computed-torque control.

4.1 Control design

Dynamic equations can be divided into two
parts : the equations related directly to torque and
the equations related indirectly to torque. In this
paper, one of seven independent configuration
variables can be written as a relation equation
independent of the torques since the number of
torques is six but there are seven independent
configuration variables.

Definition

(1) The transformation matrix Pin Eq. (2) is a
(7x6) full rank matrix. Thus, there exist a (1 X
7) matrix P+ such that P+P=0.

(2) The transformation matrix Pin Eq.(2) is
not invertible. Thus, its pseudo-inverse P* is
defined such that P*P=1.

By definition of P* and P*, the matrix [P+
P17 is a (7X7) invertible matrix (Chevallereau,
2003). In general, the matrix P is constant. There-
fore, P* and P+ are constant and can be calcu-
lated offline.

If dividing dynamic equations in Eq. (2) into
two parts, the following set of equations is de-
scribed as:

PL(M(q)G+Cl(q, @) ¢+G(g)+JTF)=0(22)
P*(M(q)i§i+Clq, ) ¢+G(g) +J'F)=T(3)

In order to obtain input torques from these dy-
namic equations, we have to eliminate one para-
meter using the equation unrelated to the torques.
If a relation equation independent of the torques
are written with respect to the joint angle of a
supporting foot, &, the following equation is ob-
tained from Eq. (22).

6,=7(d, ¢, @) (24)
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where f(+) is a function except 6.

The configurable variable vector g=[6 & 6
6, & 6; @17 describes the configuration of a
biped robot in the absolute coordinates. These
variables are reduced in number from seven to six
since the number of actuators is smaller than that
of independent configurable variables. Therefore,
in order to apply to the computed torque control,
control variables with respect to the error dy-
namics are defined as follows : hip position (xx,
2n), ankle position of the swing leg (xs, 24) , joint
angle of the upper body (#:), and ankle joint
angle of the swing leg (6;). Thus, they are de-
scribed as a variable vector, 7.

(J=[01 & & 6, 6 6 67]1

=>7”=[Xh Zn Xa 2a O lgf]r

This transformation means that just one indepen-
dent configuration variable must be controlled
indirectly. ‘

Using Eq. (24) and the kinematic relation be-
tween 7 and g, the error dynamics is defined as
the following equation.

T=Vd+kv(7—rd> +kp(7"“7’d>

=A[6$2 s G, b5 ¢ 97]T+B (25)

where &, and kp are the gain matrices and the
joint errors are asymptotically stable under the
assumption that there does not exist a little para-
meter uncertainty. And A and B are the trans-
formation matrices related to each joint angle and
angular velocity.

If transforming Eq. (25) into a angular acceler-
ation vector,

[92 93 94 95 96 9‘7]T=A~1(_B+7”.) (26)
And if inserting Eq. (26) into Eq. (22), the modi-
fied #, minimizing tracking errors is obtained.

6:=£1(4, 4, @) (27)

where f1(+) is a function except .
If inserting Egs.(26) and (27) into Eq.(23),
input torques are obtained.

T=P*M(g)[A(") (A(=B+#)T)"

+Clg, @) a+Gl@)+T7F) @8)
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Fig. 6 A flow chart of the control algorithm

where the external force F' occurs when a swing
foot contacts to the ground.

Figure 6 is a flow chart of the control algo-
rithm. The angular acceleration, d,, is eliminated
using the equation unrelated to the torques as
shown in Eq. (24). And then a function compos-
ed of 92, 53, 54, 95, 9.6, g7 is obtained. This
function is inserted into the equation related to
the torques as shown in Eq. (23). As a result, we
can obtain the input torque vector and control a
biped robot with curved soles.

5. Simulation

The effectiveness and the performance of the
proposed dynamic control are shown in computer
simulations. It is assumed that the center of grav-
ity of each link is known and fixed at the center
of the link. The physical parameters of a biped
robot with curved soles used in this simulation
are listed in Table 1. And the parameters used in
the MIPM are listed in Table 2. Where x; is the
position of a supporting leg and y is the distance
translated by the rotation of the curved sole in a
supporting leg. In the simulation, a=05, ko=
10000 N/m, £,=0.001 m, R=0.3 m.

Figure 7 shows a stick diagram for normal
walking of a biped robot with curved soles on a
flat surface. Where sticks and small circles are
links and joints, respectively. And its hip joint
moves up and down. The trajectories of each joint
angle are shown in Fig. 8. These figures show that
the biped robot walks continuously because the
proposed controller reduces tracking errors and
the initial errors of a swing foot are modified at
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Table 1 Physical parameters of the biped model
used

Link 1 2 3 4 5 6 7
Length (m) {0.0510.35]0.35] 0.3 |0.3510.35}0.05
Mass (kg) I 1 1 6 1 1 1

Table 2 Locomotion parameters used in the MIPM

Parameters Symbol Values
Step time T 0.5 sec
Height of the H; 0.7m
center of mass
Stride S+ (i (T)—x1(0))02+ym
Maximum foot height hy 0.05m

1.2¢

0.8

08

{ml

04

0.2

Fig. 7 Stick diagram of a biped robot walking on
flat surface in the sagittal plane

the starting moment of the swing phase.

Figure 9 shows that a supporting foot with a
curved sole rolls on the ground and its contact
point moves on the horizontal surface. This rota-
tion motion makes the stride longer almost 10 cm
to 15 cm. This means that the stride of a biped
robot with curved soles (when the radius of the
curved sole R is 0.3m (R=0.3m)) showing a
more 25% to 37% increase compared to that of a
biped robot with flat soles (when the radius of the
curved sole R is infinity (R=o0) and also its
ankle joint can move within the range limit of 3.
5cm in x-axis and 2 cm in z-axis. This rotation
helps to avoid singular conditions at walking on
the ground or going up stairs and is also useful

pR]
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Angie frad)
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Fig. 8 Trajectory of each joint angle
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Fig. 9 Stick diagram of a supporting foot in the
sagittal plane

with respect to energy efficiency because the 7-dof
biped walking mechanism possesses and uses
passive curved feet like passive dynamic walking
on a downhill slope studied by McGeer (1990).
Figure 10 shows that the curved sole is more
efficient than the flat sole with the same stride.
Thus, the consumption power is reduced by 36%.
Figure 11 shows a stick diagram for walking a
staircase in the sagittal plane. Visually two feet of
the biped robot with curved soles have very natu-
ral motion. In addition, its knee joint is stretched
almost in the same way as the walking pattern of
a human being.

High speed walking of a biped robot with flat
soles requires the knee joint to be stretched to
its limit and an increase in stride per a step. In
general, this results in kinematic singularity as the
stride lengthens. However, simulation results with
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Fig. 10 Energy comparison in a viewpoint of the
sole shape
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Fig. 11 Stick diagram of a biped robot walking a
staircase in the sagittal plane

respect to high speed walking show that a biped
robot with curved soles can walk stably and
quickly without stretching its leg because the
curved sole has the same effect as a dynamic link
whose length changes.

In the field of biped robots, periodic and stable
walking is the one of the most important issues.
Figure 12 shows the phase portraits with respect
to each joint angle and each joint angular velocity
for 50 steps. They display oscillations of fixed
amplitude and fixed period, that is, limit cycles.
When the robot starts to walk, its motion exists
outside the limit cycles. But after some steps, its
motion can neither grow unbounded nor decay to
zero. Instead, it converges into limit cycles. These
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Fig. 12 Phase portraits of each joint

limit cycles indicate stable walking of the biped
robot with curved soles.

6. Conclusion

This paper proposed a control method and a
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trajectory generation method for biped robots with
curved soles in order to get the same effectiveness
as toe joints without requiring extra actuators.
Thus, we derived the desired trajectory with the
Moving Inverted Pendulum Model and controlled
the under-actuated system. Computer simulation
results showed that a biped robot with curved
soles walks stably although periodic errors occur.
The position translation of its ankle joint by the
rotation of its curved sole at contacting on the
ground is an important difference, compared to
biped robots with flat soles. It is also effective for
walking up-and-down stairs.
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