• 제목/요약/키워드: waito-c

검색결과 26건 처리시간 0.02초

Fusarium prolifertum KGL0401의 지베렐린 생산 최적조건과 waito-c 생장에 미치는 영향 (Optimization of gibberellin production by Fusarium prolifertum KGL0401 and its involvement in waito-c rice growth)

  • 임순옥;이진형;이인중;이인구;김종국
    • 생명과학회지
    • /
    • 제17권1호
    • /
    • pp.120-124
    • /
    • 2007
  • 본 연구는 지베렐린을 생산하는 곰팡이로 알려진 야생균주 Gibberella fujikuroi보다 더 많은 지베렐린을 생산하는 균인 Fusarium proliferatum KGL0401를 꽈리 뿌리에서 분리하였으며[13], 지베렐린 생산을 위한 최적 탄소원과 질소원의 종류, C:N ratio에 대해서 실험을 수행하였다. 지베렐린 중 생물학적 활성이 가장 높은 $GA_3$를 가장 많이 생산하는 탄소원은 sucrose(7.02 ng/ml)이었으며, 질소원은 $NH_4Cl$(187.63 ng/ml)이었다. 그리고 최적 C:N ratio를 찾기 위해 탄소원(0 - 1.5 M)과 질소원(0 - 0.47M)을 배지에 첨가하였다. 결과적으로 최적 탄소원과 질소원의 ratio가 0.5 M : 0.17 M일 때 생물학적 활성을 가진 $GA_3$를 140.0 ng/ml로 가장 많이 생산하는 것으로 나타났다. 그리고 bioassay 결과 $GA_1,\;GA_3\;GA_4$$GA_7$의 함량이 가장 높았던 C:N ratio가 0.5 M : 0.17 M 일 때의 배양액 10 ul을 처리한 waito-c 볍씨의 길이가 평균 11.1 cm로 가장 높게 나타났다.

Proteome Analysis of Waito-c Rice Seedlings Treated with Culture Fluid of Gibberellin-producing Fungus, Fusarium proliferatum KGL0401

  • Rim, Soon-Ok;Lee, Jin-Hyung;Hwang, Seon-Kap;Suh, Seok-Jong;Lee, Jin-Man;Rhee, In-Koo;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권12호
    • /
    • pp.1990-1994
    • /
    • 2006
  • Fusarium proliferatum KGL0401 was previously isolated from Physalis alkekengi var. francheti plant roots and exhibited a high GA productivity. A gas chromatography-mass spectrometry (GC-MS) analysis of extracts of the culture fluid of F proliferatum KGL0401 also revealed the presence of $GA_1$, $GA_3$, $GA_4$, $GA_7$, $GA_{20}$, and $GA_{24}$. Therefore, the present study conducted a proteome analysis of waito-c rice treated with the culture fluid of the isolated F proliferatum KGL0401 to identify the protein expression triggered by the GA-containing culture fluid. The results revealed the overexpression of 180 protein spots in the sample treated with the culture fluid. Among them, 75 induced proteins were selected and analyzed by MALDI-TOF (matrix-assisted laser desorption-iorrization time-of-flight) mass spectrometry, followed by database searching, and 51 proteins were identified.

Aspergillus clavatus Y2H0002 as a New Endophytic Fungal Strain Producing Gibberellins Isolated from Nymphoides peltata in Fresh Water

  • You, Young-Hyun;Kwak, Tae Won;Kang, Sang-Mo;Lee, Myung-Chul;Kim, Jong-Guk
    • Mycobiology
    • /
    • 제43권1호
    • /
    • pp.87-91
    • /
    • 2015
  • Eighteen endophytic fungi with different colony morphologies were isolated from the roots of Nymphoides peltata growing in the Dalsung wetland. The fungal culture filtrates of the endophytic fungi were treated to Waito-c rice seedling to evaluate their plant growth-promoting activities. Culture filtrate of Y2H0002 fungal strain promoted the growth of the Waito-c rice seedlings. This strain was identified on the basis of sequences of the partial internal transcribed spacer region and the partial beta-tubulin gene. Upon chromatographic analysis of the culture filtrate of Y2H0002 strain, the gibberellins (GAs: $GA_1$, $GA_3$, and $GA_4$) were detected and quantified. Molecular and morphological studies identified the Y2H0002 strain as belonging to Aspergillus clavatus. These results indicated that A. clavatus improves the growth of plants and produces various GAs, and may participate in the growth of plants under diverse environmental conditions.

Isolation of a Gibberellin-producing fungus (Penicillium sp. MH7) and Growth Promotion of Crown Daisy (Chrysanthemum coronarium)

  • Hamayun, Muhammad;Khan, Sumera Afzal;Iqbal, Ilyas;Ahmad, Bashir;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.202-207
    • /
    • 2010
  • Plant growth promoting fungi (PGPF) are well known for the production of useful secondary metabolites. However, limited information is available on the gibberellin (GA) production capacity of PGPF of endophytic origin. In the current study, 15 fungal endophytes were isolated from the roots of Crown daisy, and then screened on Waito-c rice, in order to identify plant growth promoting fungi. The fungal isolate MH7 significantly increased the shoot length (12.1 cm) of Waito-c in comparison with control treatment (7.9 cm). In a separate experiment, the culture filtrate (CF) of MH7 significantly promoted the growth attributes of Crown daisy. The MH7 CF was analyzed for gibberellins and it contained all physiologically active gibberellins ($GA_1$, 1.37 ng/ml; $GA_3$, 5.88 ng/ml; $GA_4$, 8.62 ng/ml; and $GA_7$, 2.05 ng/ml) in conjunction with physiologically inactive $GA_9$ (0.83 ng/ml), $GA_{12}$ (0.44 ng/ml), $GA_{15}$ (0.74 ng/ml), $GA_{19}$ (1.16 ng/ml), and $GA_{20}$ (0.98 ng/ml). The CF of MH7 produced higher amounts of $GA_3$, $GA_4$, $GA_7$, $GA_9$, and $GA_{12}$ than wild-type Fusarium fujikuroi, which was used as a control for GA production. The fungal isolate MH7 was later identified as a new strain of Penicillium on the basis of its morphological characteristics and phylogenetic analysis of the 188 rDNA sequence.

Gibberellin Production and Plant Growth Enhancement by Newly Isolated Strain of Scolecobasidium tshawytschae

  • Hamayun, Muhammad;Khan, Sumera Afzal;Kim, Ho-Youn;Chaudhary, Muhammad Fayyaz;Hwang, Young-Hyun;Shin, Dong-Hyun;Kim, In-Kyeom;Lee, Byung-Hyun;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권6호
    • /
    • pp.560-565
    • /
    • 2009
  • We isolated nine endophytic fungi from the roots of salt-stressed soybean cultivar Daewonkong and screened them for growth-promoting secondary metabolites. Of all fungal isolates, P-4-3 induced maximum growth promotion of waito-c rice and soybean. Analysis of the culture filtrate of P-4-3 showed the presence of physiologically active gibberellins $GA_1$, $GA_3$, $GA_4$, and $GA_7$, along with physiologically inactive $GA_{15}$ and $GA_{24}$. The plant growth promotion and gibberellin-producing capacity of P-4-3 was much higher than wild-type Gibberella fujikuroi, which was taken as the control during the present study. The fungal isolate P-4-3 was identified as a new strain of Scolecobasidium tshawytschae through the morphological characteristics and phylogenetic analysis of 18S rDNA sequence. Gibberellins production and plant growth promoting ability of genus Scolecobasidium was reported for the first time in the present study.

Gibberellin-Producing Endophytic Fungi Isolated from Monochoria vaginalis

  • Ahmad, Nadeem;Hamayun, Muhammad;Khan, Sumera Afzal;Khan, Abdul Latif;Lee, In-Jung;Shin, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1744-1749
    • /
    • 2010
  • The role of endophytic fungi in plant growth and development is well documented. However, endophytic fungi with growth promotion capacity have never been isolated from weeds previously. In the current study, we isolated 8 fungal endophytes from the roots of Monochoria vaginalis, a serious weed of rice paddy in Korea. These isolates were screened on Waito-C, in order to identify plant growth promoting metabolites. Two fungal isolates (M5.A & M1.5) significantly promoted the plant height and shoot length of Waito-C during preliminary screening experiments. The culture filtrates (CFs) of M5.A and M1.5 also promoted the shoot length of Echinocloa crusgalli. Gibberellins (GAs) analysis of the CFs of M5.A and M1.5 showed that these endophytic fungi secrete higher quantities of GAs as compared with wild-type G. fujikuroi KCCM12329. The CF of M5.A contained bioactive GAs ($GA_3$, 2.8 ng/ml; $GA_4$, 2.6 ng/ml, and $GA_7$, 6.68 ng/ml) in conjunction with physiologically inactive $GA_9$ (1.61 ng/ml) and $GA_{24}$ (0.18 ng/ml). The CF of M1.5 contained physiologically active GAs ($GA_3$, 1.64 ng/ml; $GA_4$, 1.37 ng/ml and $GA_7$, 6.29 ng/ml) in conjunction with physiologically inactive $GA_9$ (3.44 ng/ml), $GA_{12}$ (0.3 ng/ml), and $GA_{24}$ (0.59 ng/ml). M5.A and M1.5 were identified as new strains of Penicillium sp. and Aspergillus sp., respectively, based on their 18S rDNA sequence homology and phylogenetic analysis.

사구에 서식하는 단자엽식물로부터 식물 생장 촉진 활성 내생 진균류의 분리 (Isolation of Endophytic Fungi Capable of Plant Growth Promotion from Monocots Inhabited in the Coastal Sand Dunes of Korea)

  • ;;임순옥;이인중;서종철;추연식;진익렬;김상달;이인구;김종국
    • 생명과학회지
    • /
    • 제18권10호
    • /
    • pp.1355-1359
    • /
    • 2008
  • 내생성 진균류는 초본류의 식물체 내에 주로 서식하며, 식물의 병원균으로부터 숙주를 보호할 뿐만 아니라, 식물 생육에 유리하게 작용하는 다양한 대사 산물을 생산한다. 매우 흔히 접할 수 있는 사구식물의 뿌리로부터 49종의 균류를 분리하여 식물 생장 촉진 활성이 있는 균주를 선별하였다. 결과적으로 37균주(75.5%)는 awito-c 벼의 생육을 촉진하였으며, 11균주(22.5%)는 생육을 저해하였으며, 1균주(2%)는 생육에 아무런 영향을 미치지 않았다. Gibberella fujikuroi와 증류수 및 Czapek broth 배지를 control 로 사용하여 실험을 수행하였다. 결론적으로 사구식물 내생균류의 많은 부분은 숙주식물의 생육과 발달을 조장하는 대사 산물을 생산함을 알 수 있었다.

Aspergillus flavus Y2H001의 식물생육촉진과 Gibberellin A3의 생산 (Plant Growth Promotion and Gibberellin A3 Production by Aspergillus flavus Y2H001)

  • 유영현;박종명;강상모;박종한;이인중;김종국
    • 한국균학회지
    • /
    • 제43권3호
    • /
    • pp.200-205
    • /
    • 2015
  • 경상북도 성주군의 농경지에서 자생하는 들깨를 채집하여 이로부터 형태학적으로 상이한 15개의 내생진균을 순수 분리하였다. 이들의 배양여과액을 이용하여 난장이벼의 유묘에 처리하여 식물생장촉진 활성을 조사한 결과, 이들 중 Y2H001균주가 식물생장활성이 가장 우수한 것으로 나타났다. Y2H001균주의 ITS영역 염기서열과 ${\beta}$-tubulin 유전자 염기서열을 사용하여 계통학적 유연관계를 확인하였으며, 이러한 분자계통학적 분석 및 형태학적 관찰을 통해 Aspergillus flavus로 동정되었다. 또한 A. flavus Y2H001균주의 배양여과액을 GC/MS를 통하여 분석하였고 식물생장을 촉진하는 원인물질로 $GA_3$ (1.954 ng/mL)를 생산하는 것을 확인하였다.

Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion

  • Lee, Ko-Eun;Radhakrishnan, Ramalingam;Kang, Sang-Mo;You, Young-Hyun;Joo, Gil-Jae;Lee, In-Jung;Ko, Jae-Hwan;Kim, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1467-1475
    • /
    • 2015
  • The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

Salinity Stress Resistance Offered by Endophytic Fungal Interaction Between Penicillium minioluteum LHL09 and Glycine max. L

  • Khan, Abdul Latif;Hamayun, Muhammad;Ahmad, Nadeem;Hussain, Javid;Kang, Sang-Mo;Kim, Yoon-Ha;Adnan, Muhammad;Tang, Dong-Sheng;Waqas, Muhammad;Radhakrishnan, Ramalingam;Hwang, Young-Hyun;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권9호
    • /
    • pp.893-902
    • /
    • 2011
  • Endophytic fungi are little known for their role in gibberellins (GAs) synthesis and abiotic stress resistance in crop plants. We isolated 10 endophytes from the roots of field-grown soybean and screened their culture filtrates (CF) on the GAs biosynthesis mutant rice line - Waito-C. CF bioassay showed that endophyte GMH-1B significantly promoted the growth of Waito-C compared with controls. GMH-1B was identified as Penicillium minioluteum LHL09 on the basis of ITS regions rDNA sequence homology and phylogenetic analyses. GC/MS-SIM analysis of CF of P. minioluteum revealed the presence of bioactive $GA_4$ and $GA_7$. In endophyte-soybean plant interaction, P. minioluteum association significantly promoted growth characteristics (shoot length, shoot fresh and dry biomasses, chlorophyll content, and leaf area) and nitrogen assimilation, with and without sodium chloride (NaCl)-induced salinity (70 and 140 mM) stress, as compared with control. Field-emission scanning electron microcopy showed active colonization of endophyte with host plants before and after stress treatments. In response to salinity stress, low endogenous abscisic acid and high salicylic acid accumulation in endophyte-associated plants elucidated the stress mitigation by P. minioluteum. The endophytic fungal symbiosis of P. minioluteum also increased the daidzein and genistein contents in the soybean as compared with control plants, under salt stress. Thus, P. minioluteum ameliorated the adverse effects of abiotic salinity stress and rescued soybean plant growth by influencing biosynthesis of the plant's hormones and flavonoids.