Browse > Article
http://dx.doi.org/10.4014/jmb.1103.03012

Salinity Stress Resistance Offered by Endophytic Fungal Interaction Between Penicillium minioluteum LHL09 and Glycine max. L  

Khan, Abdul Latif (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Hamayun, Muhammad (Department of Botany, Abdul Wali Khan University)
Ahmad, Nadeem (Department of Botany, Islamia College University)
Hussain, Javid (Kohat University of Science and Technology)
Kang, Sang-Mo (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Kim, Yoon-Ha (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Adnan, Muhammad (Kohat University of Science and Technology)
Tang, Dong-Sheng (Key Laboratory of Agri-biodiversity and Pest Management, Yunnan Agricultural University)
Waqas, Muhammad (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Radhakrishnan, Ramalingam (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Hwang, Young-Hyun (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Lee, In-Jung (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.9, 2011 , pp. 893-902 More about this Journal
Abstract
Endophytic fungi are little known for their role in gibberellins (GAs) synthesis and abiotic stress resistance in crop plants. We isolated 10 endophytes from the roots of field-grown soybean and screened their culture filtrates (CF) on the GAs biosynthesis mutant rice line - Waito-C. CF bioassay showed that endophyte GMH-1B significantly promoted the growth of Waito-C compared with controls. GMH-1B was identified as Penicillium minioluteum LHL09 on the basis of ITS regions rDNA sequence homology and phylogenetic analyses. GC/MS-SIM analysis of CF of P. minioluteum revealed the presence of bioactive $GA_4$ and $GA_7$. In endophyte-soybean plant interaction, P. minioluteum association significantly promoted growth characteristics (shoot length, shoot fresh and dry biomasses, chlorophyll content, and leaf area) and nitrogen assimilation, with and without sodium chloride (NaCl)-induced salinity (70 and 140 mM) stress, as compared with control. Field-emission scanning electron microcopy showed active colonization of endophyte with host plants before and after stress treatments. In response to salinity stress, low endogenous abscisic acid and high salicylic acid accumulation in endophyte-associated plants elucidated the stress mitigation by P. minioluteum. The endophytic fungal symbiosis of P. minioluteum also increased the daidzein and genistein contents in the soybean as compared with control plants, under salt stress. Thus, P. minioluteum ameliorated the adverse effects of abiotic salinity stress and rescued soybean plant growth by influencing biosynthesis of the plant's hormones and flavonoids.
Keywords
Penicillium minioluteum; soybean plant growth; phytohormones; salt stress; daidzein; genistein;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Murakami-Mizukami, Y., Y. Yamamoto, and S. Yamaki. 1991. Analyses of indole acetic acid and abscisic acid contents in nodules of soybean plants bearing VA mycorrhizas. Soil Sci. Plant Nutr. 37: 291-298.   DOI
2 Oses, R., S. Valenzuela, J. Freer, E. Sanfuentes, and J. Rodriguez. 2008. Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Div. 33: 77-86.
3 Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681.   DOI   ScienceOn
4 Shaw, L. J., P. Morris, and J. E. Hooker. 2006. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol. 8: 1867-1880.   DOI   ScienceOn
5 Khan, S. A., M. Hamayun, H. J. Yoon, H. Y. Kim, S. J. Suh, S. K. Hwang, et al. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231-237.   DOI   ScienceOn
6 Lee, I. J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011.   DOI
7 Mauch-Mani, B. and F. Mauch. 2005. The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol. 8: 409-414.   DOI   ScienceOn
8 Schulz, B. and C. Boyle. 2005. The endophytic continuum. Mycol. Res. 109: 661-686.   DOI   ScienceOn
9 Seskar, M., V. Shulaev, and I. Raskin. 1998. Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol. 116: 387-392.   DOI
10 Sharifi, M., M. Ghorbanli, and H. Ebrahimzadeh. 2007. Improved growth of salinity-stressed soybean after inoculation with pretreated mycorrhizal fungi. J. Plant Physiol. 164: 1144-1151.   DOI   ScienceOn
11 Subramanian, S., G. Stacey, and O. Yu. 2006. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J. 48: 261-273.   DOI   ScienceOn
12 Taylor, D. L. and T. D. Bruns. 1999. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: Minimal overlap between the mature forest and resistant propagule communities. Microbial Ecol. 8: 1837-1850.
13 Sawada, Y., M. Aoki, K. Nakaminami, W. Mitsuhashi, K. Tatematsu, T. S. Kushiro, et al. 2008. Phytochrome- and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic lettuce seeds. Plant Physiol. 146: 1386-1396.   DOI   ScienceOn
14 Richardson, A. E., J. Barea, A. M. Mcneill, and C. Prigent-Combaret. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321: 305-339.   DOI
15 Rijke, E. D., L. Aardenburg, J. V. Dijk, F. Ariese, W. H. O. Ernst, C. Gooijer, and U. A. Brinkman. 2005. Changed isoflavone levels in red clover (Trifolium pratense L.) leaves with disturbed root nodulation in response to waterlogging. J. Chem. Ecol. 31: 1285-1298.   DOI   ScienceOn
16 Ryals, J. A., U. H. Neuenschwander, M. G. Willits, A. Molina, H. Y. Steiner, and M. D. Hunt. 1996. Systemic acquired resistance. Plant Cell 8: 809-1819.
17 Pozo, M. J. and C. Azcon-Aguilar. 2007. Unraveling mycorrhizainduced resistance. Curr. Opin. Plant Biol. 10: 393-398.   DOI   ScienceOn
18 Qi, Q. G., P. A. Rose, G. D. Abrams, D. C. Taylor, S. R. Abrams, and A. J. Cutler. 1998. Abscisic acid metabolism, 3-ketoacyl-coenzyme A synthase gene expression and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol. 117: 979-987.   DOI
19 Rajjou, L., M. Belghazi, R. Huguet, C. Robin, A. Moreau, C. Job, and D. Job. 2006. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141: 910-923.   DOI   ScienceOn
20 Phommalth, S., Y. Jeong, Y. Kim, K. H. Dhakal, and Y. Hwang. 2008. Effects of light treatment on isoflavone content of germinated soybean seeds. J. Agric. Food Chem. 56: 10123-10128.   DOI   ScienceOn
21 Aoki, T., T. Akasaki, and S. Ayabe. 2000. Flavonoids of leguminous plants: Structure, biological activity and biosynthesis. J. Plant Res. 113: 475-488.   DOI   ScienceOn
22 Waller, F., B. Achatz, H. Baltruschat, J. Fodor, K. Becker, M. Fischer, et al. 2005. The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc. Natl. Acad. Sci. USA 102: 13386-13391.   DOI   ScienceOn
23 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
24 Volpin, H., D. A. Phillips, Y. Okon, and Y. A. Kapulnik. 1995. Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol. 108: 1449-1454.   DOI
25 Yu, O. and B. McGonigle. 2005. Metabolic engineering of isoavone biosynthesis. Adv. Agron. 86: 147-190.
26 Wang, Y., S. Mopper, and K. H. Hasenstein. 2001. Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J. Chem. Ecol. 27: 327-342.   DOI   ScienceOn
27 Ahmad, N., M. Hamayun, S. A. Khan, A. L. Khan, I. J. Lee, and D. H. Shin. 2010. Gibberellin-producing endophytic fungi isolated from Monochoria vaginalis. J. Microbiol. Biotechnol. 20: 1744-1749.
28 Alonso-Ramirez, A., D. Rodriguez, D. Reyes, J. A. Jimenez, G. Nicolas, M. Lopez-Climent, et al. 2009. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol. 150: 1335-1344.   DOI   ScienceOn
29 Ganley, R. J., S. J. Brunsfeld, and G. Newcombe. 2004. A community of unknown, endophytic fungi in western white pine. Proc. Nat. Acad. Sci. USA 101: 10107-10112.   DOI   ScienceOn
30 Gamalero, E., G. Berta, and B. R. Glick. 2009. The use of microorganisms to facilitate the growth of plants in saline soils, pp. 1-22. In M. S. Khan, A. Zaidi, and J. Mussarat, (eds.). Microbial Strategies for Crop Improvement. Springer-Verlag, Berlin, Heidelberg.
31 Gough, C., C. Galera, J. Vasse, G. Webster, E. C. Cocking, and J. Denarie. 1997. Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571 10. Mol. Plant Microb Interact. 5: 560-570.
32 Bacon, C. W. 1993. Abiotic stress tolerances (moisture, nutrients) and photo-synthesis in endophyte-infected tall fescue. Agri. Ecosyst. Environ. 44: 123-141.   DOI
33 Fateh, S. H. and W. F. Fagan. 2002. Fungal endophytes: Common host plant symbionts but uncommon mutualists. Integ. Comp. Biol. 42: 360-368.   DOI   ScienceOn
34 Franck, C., J. Lammertyn, and B. Nicolai. 2005. Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears. Proceedings of 5th International Postharvest Symposium, Mencarelli F, Tonutti P (eds.). Acta Hort. 682: 1991-1998.
35 Grant, M. R. and J. D. G. Jones. 2009. Hormone (dis)harmony moulds plant health and disease. Science 324: 750.   DOI
36 Arnold, A. E., D. A. Henk, R. L. Eells, F. Lutzoni, and R. Vilgalys. 2007. Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99: 185-206.   DOI   ScienceOn
37 Arnold, A. E. 2008. Endophytic fungi: hidden components of tropical community ecology, pp. 254-271. In W. F. Carson and S. A. Schnitzer (eds.). Tropical Forest Community Ecology. John Wiley & Sons, Oxford, UK.
38 Cheplick, C. P. 2004. Recovery from drought stress in Lolium perenne (Poaceae): Are fungal endophytes detrimental? Am. J. Bot. 91: 1960-1968.   DOI   ScienceOn
39 Bomke, C. and B. Tudzynski. 2009. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70: 1876-1893.   DOI   ScienceOn
40 Catford, J. G., C. Staehelin, G. Larose, Y. Piche, and H. Vierheilig. 2006. Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285: 257-266.   DOI
41 Choi, W. Y., S. O. Rim, J. H. Lee, J. M. Lee, I. J. Lee, K. J. Cho, et al. 2005. Isolation of gibberellins-producing fungi from the root of several Sesamum indicum plants. J. Microbiol. Biotechnol. 15: 22-28.
42 Dakora, F. D. and D. A. Phillips. 1996. Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Mol. Plant Physiol. 49: 1-20.   DOI   ScienceOn
43 Herrera-Medina, M. J., S. Steinkellner, H. Vierheilig, J. A. O. Bote, and J. M. G. Garrido. 2007. Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol. 175: 554-564.   DOI   ScienceOn
44 Kirakosyan, A., P. B. Kaufman, S. C. Chang, S. Warber, S. Bolling, and H. Vardapetyan. 2006. Regulation of isoavone production in hydroponically grown Pueraria montana (kudzu) by cork pieces, XAD-4, and methyl jasmonate. Plant Cell Rep. 25: 1387-1391.   DOI   ScienceOn
45 Khan, A. L., M. Hamayun, Y. H. Kim, S. M. Kang, and I. J. Lee. 2011. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol. Biochem. 49: 852-861.   DOI   ScienceOn
46 Khan, A. L., M. Hamayun, Y. H. Kim, S. M. Kang, J. H. Lee, and I. J. Lee. 2011. Gibberellins-producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, plant growth and isoflavone biosynthesis in soybean under salt stress. Process Biochem. 46: 440-447.   DOI   ScienceOn
47 Hussain, T. M., T. Chandrasekhar, M. Hazara, Z. Sultan, B. K. Saleh, and G. R. Gopal. 2008. Recent advances in salt stress biology - a review. Biotech. Mol. Biol. Rev. 3: 8-13.
48 Hyde, K. D. and K. Soytong. 2008. The fungal endophyte dilemma. Fungal Div. 33: 163-173.
49 Hamayun, M., S. A. Khan, I. Iqbal, B. Ahmad, and I. J. Lee. 2010. Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of crown daisy (Chrysanthemum coronarium). J. Microbiol. Biotechnol. 20: 202-207.
50 Hamayun, M., S. A. Khan, A. L. Khan, J. H. Shin, and I. J. Lee. 2010. Exogenous gibberellic acid reprograms soybean to higher growth, and salt stress tolerance. J. Agric. Food Chem. 58: 7226-7232.   DOI   ScienceOn
51 Hoffmann-Benning, S. and H. Kende. 1992. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol. 99: 1156-1161.   DOI   ScienceOn
52 Iqbal, M. and M. Ashraf. 2010. Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Env. Exp. Bot. DOI:10.1016/j.envexpbot.2010.06.002