Browse > Article
http://dx.doi.org/10.4014/jmb.0905.05040

Isolation of a Gibberellin-producing fungus (Penicillium sp. MH7) and Growth Promotion of Crown Daisy (Chrysanthemum coronarium)  

Hamayun, Muhammad (School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University)
Khan, Sumera Afzal (Centre of Biotechnology and Microbiology, University of Peshawar)
Iqbal, Ilyas (Department of Botany, University of Malakand)
Ahmad, Bashir (Centre of Biotechnology and Microbiology, University of Peshawar)
Lee, In-Jung (School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.1, 2010 , pp. 202-207 More about this Journal
Abstract
Plant growth promoting fungi (PGPF) are well known for the production of useful secondary metabolites. However, limited information is available on the gibberellin (GA) production capacity of PGPF of endophytic origin. In the current study, 15 fungal endophytes were isolated from the roots of Crown daisy, and then screened on Waito-c rice, in order to identify plant growth promoting fungi. The fungal isolate MH7 significantly increased the shoot length (12.1 cm) of Waito-c in comparison with control treatment (7.9 cm). In a separate experiment, the culture filtrate (CF) of MH7 significantly promoted the growth attributes of Crown daisy. The MH7 CF was analyzed for gibberellins and it contained all physiologically active gibberellins ($GA_1$, 1.37 ng/ml; $GA_3$, 5.88 ng/ml; $GA_4$, 8.62 ng/ml; and $GA_7$, 2.05 ng/ml) in conjunction with physiologically inactive $GA_9$ (0.83 ng/ml), $GA_{12}$ (0.44 ng/ml), $GA_{15}$ (0.74 ng/ml), $GA_{19}$ (1.16 ng/ml), and $GA_{20}$ (0.98 ng/ml). The CF of MH7 produced higher amounts of $GA_3$, $GA_4$, $GA_7$, $GA_9$, and $GA_{12}$ than wild-type Fusarium fujikuroi, which was used as a control for GA production. The fungal isolate MH7 was later identified as a new strain of Penicillium on the basis of its morphological characteristics and phylogenetic analysis of the 188 rDNA sequence.
Keywords
Penicillium; gibberellins; endophytic fungi; Crown daisy; growth promotion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Hamayun, M., S. A. Khan, H. Y. Kim, M. F. Chaudhary, Y. H. Hwang, D. H. Shin, I. K. Kim, B. H. Lee, and I. J. Lee. 2009. Gibberellin production and plant growth enhancement by newly isolated strain of Scolecobasidium tshawytschae. J. Microbiol. Biotechnol. 19: 560-565.   DOI
2 Hamayun, M., S. A. Khan, N. Ahmad, D. S. Tang, S. M. Kang, C. I. Na, et al. 2009. Cladosporium sphaerospermum as a new plant growth promoting endophyte from the roots of Glycine max (L.) Merr. World J. Microbiol. Biotechnol. 25: 627-632.   DOI   ScienceOn
3 Alexopoulos, C., C. Mims, and M. Blackwell. 1996. Introductory Mycology. Wiley & Sons, Inc., New York.
4 Ellis, M. and J. P. Ellis. 1998. Microfungi on Miscellaneous Substrates. Richmond Publishing Co. Ltd., Slough.
5 Higgs, R. E., A. Z. James, D. G. Jeffrey, and D. H. Matthew. 2001. Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl. Environ. Microbiol. 67: 371-376.   DOI   ScienceOn
6 Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, I. J. Lee, and J. G. Kim. 2009. Gibberellin production and plant growth promotion by a new strain of Gliomastix murorum. World J. Microbiol. Biotechnol. 25: 829-833.   DOI   ScienceOn
7 Martin, G. C. 1983. Commercial uses of gibberellins, pp. 395-444. In A. Crozier (ed.). The Biochemistry and Physiology of Gibberellins, Vol. 2. Preager, New York.
8 Ogas, J. 2000. Gibberellins. Curr. Biol. 10: R48-R48.   DOI   ScienceOn
9 Pitt, J. I. 1988. A Laboratory Guide to Common Penicillium Species. Commonwealth Scientific and Industrial Research Organization, Division of Food Processing, North Ryde, NSW.
10 Sugita, T. and A. Nishikawa. 2003. Fungal identification method based on DNA sequence analysis. Reassessment of the methods of the pharmaceutical society of Japan and the Japanese pharmacopoeia. J. Health Sci. 49: 531-533.   DOI   ScienceOn
11 Zou, W. X. and R. X. Tan. 1999. Advances in Plant Science pp 183-190, Vol. 2 China Higher Education Press, Beijing.
12 Khan, S. A., M. Hamayun, H. J. Yoon, H. Y. Kim, S. J. Suh, S. K. Hwang, et al. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231.   DOI   ScienceOn
13 Lee, I. J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011.   DOI
14 Nishijima, T., M. Koshioka, H. Yamazaki, and L. N. Mander. 1995. Endogenous gibberellins and bolting in cultivars of Japanese radish. Acta Hort. 394: 199-206.
15 Cragg, G. M., D. J. Newman, and K. M. Snader. 1997. Natural products in drug discovery and development. J. Nat. Prod. 60: 52-60.   DOI   ScienceOn
16 Kim, K. S. and Y. S. Lee. 2000. Rapid and accurate species-specific detection of Phytophthora infestans through analysis of ITS regions in its rDNA. J. Microbiol. Biotechnol. 10: 651-655.
17 Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, J. C. Seo, Y. S. Choo, et al. 2009. A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol. Lett. 31: 283-287.   DOI   ScienceOn
18 O'Donnell, K., E. Cigelnik, and H. L. Nirenberg. 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465-493.   DOI   ScienceOn
19 Waller, F., B. Achatz, H. Baltruschat, J. Fodor, K. Becker, M. Fischer, et al. 2005. The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Nat. Acad. Sci. U.S.A. 102: 13386-13391.   DOI   ScienceOn
20 Franck, C., J. Lammertyn, and B. Nicolai. 2005. Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears. Proceedings of 5th International Postharvest Symposium, eds. F. Mencarelli and P. Tonutti. Acta Hort. 682: 1991-1998.
21 Marquez, L. M., R. S. Redman, R. J. Rodriguez, and M. J. Roossinck. 2007. A virus in a fungus in a plant: Three-way symbioses required for thermal tolerance. Science 315: 513-515.   DOI
22 Frisvad, J. C. and D. Filtenborg. 1989. Terverticillate penicilia: Chemotaxonomy and mycotoxin production. Mycol. 81: 837-861.   DOI
23 Lee, H. G., J. Y. Lee, and D. H. Lee. 2001. Cloning and characterization of the ribosomal RNA gene from Gonyaulax polyerdra. J. Microbiol. Biotechnol. 11: 515-523.
24 MacMillan, J. 2002. Occurence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Reg. 20: 387-442.
25 Vandenbussche, F., A. C. Fierro, G. Wiedemann, R. Reski, and D. Van Der Straeten. 2007. Evolutionary conservation of plant gibberellin signaling pathway components. BMC Plant Biol. 7: 65.   DOI
26 Yamada, A., T. Ogura, Y. Degawa, and M. Ohmasa. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience 42: 43-50.   DOI   ScienceOn
27 Hasan, H. A. H. 2002. Gibberellin and auxin production plant root fungi and their biosynthesis under salinity-calcium interaction. Rostlinna Vyroba 48: 101-106.
28 Malinowski, D. P. and D. P. Belesky. 1999. Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J. Plant Nutr. 22: 835-853.   DOI
29 Reis, V. M., J. I. Baldani, V. L. D. Baldani, and J. Dobereiner. 2000. Biological nitrogen fixation in Gramineae and palm trees. Crit. Rev. Plant Sci. 19: 227-247.   DOI   ScienceOn
30 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
31 Kawaide, H. 2006. Biochemical and molecular analysis of gibberellin biosynthesis in fungi. Biosci. Biotechnol. Biochem. 70: 583-590   DOI   ScienceOn
32 Takahashi, N., B. O. Phinney, and J. MacMillan. 1991. Gibberellins. Springer, New York.