• Title/Summary/Keyword: w-projective module

Search Result 8, Processing Time 0.022 seconds

THE CLASS OF WEAK w-PROJECTIVE MODULES IS A PRECOVER

  • Kim, Hwankoo;Qiao, Lei;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.141-154
    • /
    • 2022
  • Let R be a commutative ring with identity. Denote by w𝒫w the class of weak w-projective R-modules and by w𝒫w the right orthogonal complement of w𝒫w. It is shown that (w𝒫w, w𝒫w) is a hereditary and complete cotorsion theory, and so every R-module has a special weak w-projective precover. We also give some necessary and sufficient conditions for weak w-projective modules to be w-projective. Finally it is shown that when we discuss the existence of a weak w-projective cover of a module, it is enough to consider the w-envelope of the module.

A HOMOLOGICAL CHARACTERIZATION OF KRULL DOMAINS

  • Wang, Fang Gui;Zhou, De Chuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.649-657
    • /
    • 2018
  • Let R be a commutative ring. In this paper, the w-projective Basis Lemma for w-projective modules is given. Then it is shown that for a domain, nonzero w-projective ideals and nonzero w-invertible ideals coincide. As an application, it is proved that R is a Krull domain if and only if every submodule of finitely generated projective modules is w-projective.

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.

A NOTE ON 𝜙-PRÜFER ν-MULTIPLICATION RINGS

  • Zhang, Xiaolei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1289-1304
    • /
    • 2022
  • In this note, we show that a strongly 𝜙-ring R is a 𝜙-PvMR if and only if any 𝜙-torsion-free R-module is 𝜙-w-flat, if and only if any GV-torsion-free divisible R-module is nonnil-absolutely w-pure, if and only if any GV-torsion-free h-divisible R-module is nonnil-absolutely w-pure, if and only if any finitely generated nonnil ideal of R is w-projective.

REGULARITY RELATIVE TO A HEREDITARY TORSION THEORY FOR MODULES OVER A COMMUTATIVE RING

  • Qiao, Lei;Zuo, Kai
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.821-841
    • /
    • 2022
  • In this paper, we introduce and study regular rings relative to the hereditary torsion theory w (a special case of a well-centered torsion theory over a commutative ring), called w-regular rings. We focus mainly on the w-regularity for w-coherent rings and w-Noetherian rings. In particular, it is shown that the w-coherent w-regular domains are exactly the Prüfer v-multiplication domains and that an integral domain is w-Noetherian and w-regular if and only if it is a Krull domain. We also prove the w-analogue of the global version of the Serre-Auslander-Buchsbaum Theorem. Among other things, we show that every w-Noetherian w-regular ring is the direct sum of a finite number of Krull domains. Finally, we obtain that the global weak w-projective dimension of a w-Noetherian ring is 0, 1, or ∞.

A NOTE ON WITT RINGS OF 2-FOLD FULL RINGS

  • Cho, In-Ho;Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.121-126
    • /
    • 1985
  • D.K. Harrison [5] has shown that if R and S are fields of characteristic different from 2, then two Witt rings W(R) and W(S) are isomorphic if and only if W(R)/I(R)$^{3}$ and W(S)/I(S)$^{3}$ are isomorphic where I(R) and I(S) denote the fundamental ideals of W(R) and W(S) respectively. In [1], J.K. Arason and A. Pfister proved a corresponding result when the characteristics of R and S are 2, and, in [9], K.I. Mandelberg proved the result when R and S are commutative semi-local rings having 2 a unit. In this paper, we prove the result when R and S are 2-fold full rings. Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is nondegenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$ (V, R) induced by B is an isomorphism), and with a quadratic mapping .phi.:V.rarw.R such that B(x,y)=(.phi.(x+y)-.phi.(x)-.phi.(y))/2 and .phi.(rx)= $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U(R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$, .., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2, we reserve the notation [ $a_{11}$, $a_{22}$] for the space.the space.e.e.e.

  • PDF

CLASSIFICATION OF CLIFFORD ALGEBRAS OF FREE QUADRATIC SPACES OVER FULL RINGS

  • Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.11-15
    • /
    • 1985
  • Manddelberg [9] has shown that a Clifford algebra of a free quadratic space over an arbitrary semi-local ring R in Brawer-Wall group BW(R) is determined by its rank, determinant, and Hasse invariant. In this paper, we prove a corresponding result when R is a full ring.Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is non-degenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$(V,R) induced by B is an isomorphism), and with a quadratic mapping .phi.: V.rarw.R such that B(x,y)=1/2(.phi.(x+y)-.phi.(x)-.phi.(y)) and .phi.(rx) = $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U9R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$,.., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2 we reserve the notation [a $a_{11}$, $a_{22}$] for the space. A commutative ring R having 2 a unit is called full [10] if for every triple $a_{1}$, $a_{2}$, $a_{3}$ of elements in R with ( $a_{1}$, $a_{2}$, $a_{3}$)=R, there is an element w in R such that $a_{1}$+ $a_{2}$w+ $a_{3}$ $w^{2}$=unit.TEX>=unit.t.t.t.

  • PDF