• Title/Summary/Keyword: vulnerability index method

Search Result 84, Processing Time 0.035 seconds

Health Vulnerability Assessment for PM10 due to Climate Change in Incheon (인천지역 기후변화에 따른 미세먼지의 건강 취약성 평가)

  • Yoo, Heejong;Kim, Jongkon;Shin, Jaewon;Kim, Youngju;Min, Sungeun;Jegal, Daesung;Bang, Kiin;Lee, Sungmo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.240-246
    • /
    • 2017
  • Objectives: This study was conducted to evaluate the vulnerability of the human health sector to $PM_{10}$ due to climate change in Incheon over the period of 2005-2014. Methods: Vulnerability to $PM_{10}$ consists of the three categories of climate exposure, sensitivity, and adaptive capacity. The indexes for climate exposure and sensitivity indicate positive effects, while adaptive capacity shows a negative effect on vulnerability to $PM_{10}$. The variables in each category were standardized by the rescaling method, and respective relative regional vulnerability was analyzed through the vulnerability index calculation formula of the Intergovernmental Panel on Climate Change. Results: Regions with a high exposure index were the western and northern urban areas with industrial complexes adjacent to a highway, including Bupyong-gu and Seo-gu. Major factors determining the climate exposure index were the $PM_{10}$ concentration, days of $PM_{10}$ >= $100{\mu}g/m^3$, and $PM_{10}$ emissions. The regions showing a high sensitivity index were urban regions with high populations; these commonly had a high mortality rate for related diseases and vulnerable populations. Conclusions: This study is able to support regionally adjusted adaptation policies and the quantitative background of policy priority since it provides information on the regional health vulnerability to $PM_{10}$ due to climate change in Incheon.

Seismic vulnerability assessment of masonry facade walls: development, application and validation of a new scoring method

  • Ferreira, Tiago M.;Vicentea, Romeu;Varum, Humberto
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.541-561
    • /
    • 2014
  • This paper approaches the issue of seismic vulnerability assessment strategies for facade walls of traditional masonry buildings through the development of a methodology and its subsequent application to over 600 building facades from the old building stock of the historic city centre of Coimbra. Using the post-earthquake damage assessment of masonry buildings in L'Aquila, Italy, an analytical function was developed and calibrated to estimate the mean damage grade for masonry facade walls. Having defined the vulnerability function for facade walls, damage scenarios were calculated and subsequently used in the development of an emergency planning tool and in the elaboration of an access route proposal for the case study of the historic city centre of Coimbra. Finally, the methodology was pre-validated through the comparison of a set of results obtained from its application and also resourcing to a widely accepted mechanical method on the description of the out-of-plane behaviour of facade walls.

Climate Change Vulnerability Assessment of Cool-Season Grasslands Based on the Analytic Hierarchy Process Method

  • Lee, Bae Hun;Cheon, Dong Won;Park, Hyung Soo;Choi, Ki Choon;Shin, Jeong Seop;Oh, Mi Rae;Jung, Jeong Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.189-197
    • /
    • 2021
  • Climate change effects are particularly apparent in many cool-season grasslands in South Korea. Moreover, the probability of climate extremes has intensified and is expected to increase further. In this study, we performed climate change vulnerability assessments in cool-season grasslands based on the analytic hierarchy process method to contribute toward effective decision-making to help reduce grassland damage caused by climate change and extreme weather conditions. In the analytic hierarchy process analysis, vulnerability was found to be influenced in the order of climate exposure (0.575), adaptive capacity (0.283), and sensitivity (0.141). The climate exposure rating value was low in Jeju-do Province and high in Daegu (0.36-0.39) and Incheon (0.33-0.5). The adaptive capacity index showed that grassland compatibility (0.616) is more important than other indicators. The adaptation index of Jeollanam-do Province was higher than that of other regions and relatively low in Gangwon-do Province. In terms of sensitivity, grassland area and unused grassland area were found to affect sensitivity the most with index values of 0.487 and 0.513, respectively. The grassland area rating value was low in Jeju-do and Gangwon-do Province, which had large grassland areas. In terms of vulnerability, that of Jeju-do Province was lower and of Gyeongsangbuk-do Province higher than of other regions. These results suggest that integrating the three aspects of vulnerability (climate exposure, sensitivity, and adaptive capacity) may offer comprehensive and spatially explicit adaptation plans to reduce the impacts of climate change on the cool-season grasslands of South Korea.

Heavy Snow Vulnerability in South Korea Using PSR and DPSIR Methods (PSR과 DPSIR을 이용한 대한민국 대설 취약성 분석)

  • Keunwoo Lee;Hyeongjoo Lee;Gunhui Chung
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.345-352
    • /
    • 2023
  • Recently, the risk of snow disasters has been increasing South Korea. The damages of heavy snow were categorized into direct and indirect. Direct damage is usually the collapse of buildings as houses, greenhouse or barns. Indirect damage is various, for example, traffic congestion, traffic acident, drop damage, and so on. In South Korea, direct damage is severe in rural area, mosty collapse of greenhouse or barns. However, indirect damage such as traffic accident is mostly occurred in urban area. Therefore, the regional characteristics should be considered when vulnerability is evaluated. Therefore, in this study, the PSR and DPSIR method were applied by regional scale in South Korea. The PSR evaluation method is divided into pressure, state, and reaction index. however, the DPSIR evaluation method is divided into Driving force, Pressure, State, Impact, and Response index. the DPSIR evaluation method is divided into Driving force, Pressure, State, Impact, and Response index. Data corresponding to each indicator were collected, and the weight was calculated using the entropy method to calculate the snowfall vulnerability index by regional scale in South Korea. Calculated heavy snow damage vulnerabilities from the two methods were compared. The calculated vulnerabilities were validated using the recent snow damage in South Korea from 2018 to 2022. Snow vulnerability index calculated using the DPSIR method showed more reliable results. The results of this study could be utilized as an information to prepare the mitigation of heavy snow damage and to establish an efficient snow removal response system.

A probabilistic analytical seismic vulnerability assessment framework for substandard structures in developing countries

  • Kyriakides, Nicholas;Ahmad, Sohaib;Pilakoutas, Kypros;Neocleous, Kyriacos;Chrysostomou, Christis
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.665-687
    • /
    • 2014
  • This paper presents a framework for analytical seismic vulnerability assessment of substandard reinforced concrete (RC) structures in developing countries. Amodified capacity-demand diagram method is used to predict the response of RC structures with degrading behaviour. A damage index based on period change is used to quantify the evolution of damage. To demonstrate the framework, a class of substandard RC buildings is examined. Abrupt accumulation of damage is observed due to the brittle failure modes and this is reflected in the developed vulnerability curves, which differ substantially from the curves of ductile structures.

Development and the Application of Flood Disaster Risk Reduction Index (홍수피해저감지수(FDRRI) 개발 및 시범적용)

  • Moon, Seung-Rok;Yang, Seung-Man;Choi, Seon-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.64-69
    • /
    • 2014
  • Community-based disaster preparedness approaches are increasingly important elements of vulnerability reduction and disaster strategies. They are associated with a policy trend that values the knowledge and capacities of local people. In this research, we describe the community diagnosis method and develop Flood Disaster Risk Reduction Index(FDRRI) for assessment of flood vulnerability. FDRRI is composed of four indicators such as Flood Exposure Indicator(FEI), Sensitivity Indicator(SI), Risk Reduction Indicator(RRI), and Community Preparedness Indicator(CPI). We anticipate to present the guideline for selection national preparedness projects and uplift community's preparedness capacity.

Evaluation of Agricultural Drought Disaster Vulnerability Using Analytic Hierarchy Process (AHP) and Entropy Weighting Method (계층화분석 및 엔트로피 가중치 산정 방법에 따른 농업가뭄재해 취약성 평가)

  • Mun, Young-Sik;Nam, Won-Ho;Yang, Mi-Hye;Shin, Ji-Hyeon;Jeon, Min-Gi;Kim, Taegon;Lee, Seung-Yong;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.13-26
    • /
    • 2021
  • Recent drought events in the South Korea and the magnitude of drought losses indicate the continuing vulnerability of the agricultural drought. Various studies have been performed on drought hazard assessment at the regional scales, but until recently, drought management has been response oriented with little attention to mitigation and preparedness. A vulnerability assessment is introduced in order to preemptively respond to agricultural drought and to predict the occurrence of drought. This paper presents a method for spatial, Geographic Information Systems-based assessment of agricultural drought vulnerability in South Korea. It was hypothesized that the key 14 items that define agricultural drought vulnerability were meteorological, agricultural reservoir, social, and adaptability factors. Also, this study is to analyze agricultural drought vulnerability by comparing vulnerability assessment according to weighting method. The weight of the evaluation elements is expressed through the Analytic Hierarchy Process (AHP), which includes subjective elements such as surveys, and the Entropy method using attribute information of the evaluation items. The agricultural drought vulnerability map was created through development of a numerical weighting scheme to evaluate the drought potential of the classes within each factor. This vulnerability assessment is calculated the vulnerability index based on the weight, and analyze the vulnerable map from 2015 to 2019. The identification of agricultural drought vulnerability is an essential step in addressing the issue of drought vulnerability in the South Korea and can lead to mitigation-oriented drought management and supports government policymaking.

Development of a Climate Change Vulnerability Index on the Health Care Sector (기후변화 건강 취약성 평가지표 개발)

  • Shin, Hosung;Lee, Suehyung
    • Journal of Environmental Policy
    • /
    • v.13 no.1
    • /
    • pp.69-93
    • /
    • 2014
  • The aim of this research was to develop a climate change vulnerability index at the district level (Si, Gun, Gu) with respect to the health care sector in Korea. The climate change vulnerability index was esimated based on the four major causes of climate-related illnesses : vector, flood, heat waves, and air pollution/allergies. The vulnerability assessment framework consists of six layers, all of which are based on the IPCC vulnerability concepts (exposure, sensitivity, and adaptive capacity) and the pathway of direct and indirect impacts of climate change modulators on health. We collected proxy variables based on the conceptual framework of climate change vulnerability. Data were standardized using the min-max normalization method. We applied the analytic hierarchy process (AHP) weight and aggregated the variables using the non-compensatory multi-criteria approach. To verify the index, sensitivity analysis was conducted by using another aggregation method (geometric transformation method, which was applied to the index of multiple deprivation in the UK) and weight, calculated by the Budget Allocation method. The results showed that it would be possible to identify the vulnerable areas by applying the developed climate change vulnerability assessment index. The climate change vulnerability index could then be used as a valuable tool in setting climate change adaptation policies in the health care sector.

  • PDF

Assessment of Local Social Vulnerability in Facing Merapi Volcanic Hazard (메라피 화산재해에 대한 지역단위의 사회적 취약성 평가)

  • Lee, Sungsu;Maharani, Yohana Noradika;Yi, Waon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.485-492
    • /
    • 2014
  • In regards to natural disasters, vulnerability analysis is a component of the disaster risk analysis with one of its objectives as a basis for planning priority setting activities. The volcano eruption raises many casualties and property in the surrounding area, especially when the volcano located in densely populated areas. Volcanic eruptions cannot be prevented, but the risk and vulnerability can be reduced which involve careful planning and preparations that anticipate a future crisis. The social vulnerability as social inequalities with those social factors can influence the susceptibility of various groups to harm and govern their ability to respond. This study carried out the methods of Social Vulnerability Index (SoVI) to measure the socially created vulnerability of the people living in Merapi proximal hamlets in Central Java, Indonesia that refers to the socioeconomic and demographic factors that affect the resilience of communities in order to describe and understand the social burdens of risk. Social vulnerability captured here, using a qualitative survey based-data such as interviews to local people with random ages and background to capture the answer vary, also interviews to stakeholders to help define social vulnerability variables. The paper concludes that by constructing the vulnerability index for the hamlets, the study reveals information about the distribution and causes of social vulnerability. The analysis using SoVI confirms that this method works well in ensuring that positive values indicating high social vulnerability and vice versa.

GIS overlay analysis for hazard assessment of drought in Iran using Standardized Precipitation Index (SPI)

  • Asrari, Elham;Masoudi, Masoud;Hakimi, Somaye Sadat
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • The Standardized Precipitation Index (SPI) is a widely used drought index to provide good estimations of the intensity, magnitude and spatial extent of droughts. The objective of this study was to analyze the spatial pattern of drought by SPI index. In this paper, the patterns of drought hazard in Iran are evaluated according to the data of 40 weather stations during 1967-2009. The influenced zone of each station was specified by the Thiessen method. It was attempted to make a new model of drought hazard using GIS. Three criteria for drought were studied and considered to define areas of vulnerability. Drought hazard criteria used in the present model included: maximum severity of drought in the period, trend of drought, and the maximum number of sequential arid years. Each of the vulnerability indicators were mapped and these as well as a final hazard map were classified into 5 hazard classes of drought: one, slight, moderate, severe and very severe. The final drought vulnerability map was prepared by overlaying three criteria maps in a GIS, and the final hazard classes were defined on the basis of hazard scores, which were determined according to the means of the main indicators. The final vulnerability map shows that severe hazard areas (43% of the country) which are observed in the west and eastern parts of country are much more widespread than areas under other hazard classes. Overall, approximately half of the country was determined to be under severe and very severe hazard classes for drought.