Browse > Article
http://dx.doi.org/10.5389/KSAE.2021.63.3.013

Evaluation of Agricultural Drought Disaster Vulnerability Using Analytic Hierarchy Process (AHP) and Entropy Weighting Method  

Mun, Young-Sik (National Agricultural Water Research Center, Hankyong National University)
Nam, Won-Ho (School of Social Safety and Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University)
Yang, Mi-Hye (Department of Convergence of Information and Communication Engineering, Hankyong National University)
Shin, Ji-Hyeon (School of Social Safety and Systems Engineering, Hankyong National University)
Jeon, Min-Gi (Department of Convergence of Information and Communication Engineering, Hankyong National University)
Kim, Taegon (Department of Bioproducts and Biosystems Engineering, University of Minnesota)
Lee, Seung-Yong (Chungnam Regional Headquarters, Korea Rural Community Corporation)
Lee, Kwang-Ya (Water Resources Planning Office, Integrated Water Management Supporting Department, Rural Research Institute, Korea Rural Community Corporation)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.63, no.3, 2021 , pp. 13-26 More about this Journal
Abstract
Recent drought events in the South Korea and the magnitude of drought losses indicate the continuing vulnerability of the agricultural drought. Various studies have been performed on drought hazard assessment at the regional scales, but until recently, drought management has been response oriented with little attention to mitigation and preparedness. A vulnerability assessment is introduced in order to preemptively respond to agricultural drought and to predict the occurrence of drought. This paper presents a method for spatial, Geographic Information Systems-based assessment of agricultural drought vulnerability in South Korea. It was hypothesized that the key 14 items that define agricultural drought vulnerability were meteorological, agricultural reservoir, social, and adaptability factors. Also, this study is to analyze agricultural drought vulnerability by comparing vulnerability assessment according to weighting method. The weight of the evaluation elements is expressed through the Analytic Hierarchy Process (AHP), which includes subjective elements such as surveys, and the Entropy method using attribute information of the evaluation items. The agricultural drought vulnerability map was created through development of a numerical weighting scheme to evaluate the drought potential of the classes within each factor. This vulnerability assessment is calculated the vulnerability index based on the weight, and analyze the vulnerable map from 2015 to 2019. The identification of agricultural drought vulnerability is an essential step in addressing the issue of drought vulnerability in the South Korea and can lead to mitigation-oriented drought management and supports government policymaking.
Keywords
Agricultural drought; vulnerability; weight; AHP; entropy;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Lee, S. J., J. D. Song, T. I. Jang, D. M. Sul, and J. K. Son, 2018. A study on the derivation of the user-oriented agricultural drought assessment criteria using the AHP technique. Journal of The Korean Society of Rural Planning 24(4): 47-55 (in Korean). doi:10.7851/Kspr.2018.24.4.047.   DOI
2 Rosenberg, N. J., 1979. Drought in the great plains-research on impact and strategies. In Proceedings of the Workshop on Research in Great Plains Drought Management Strategies, 26-28, University of Nebraska, Lincoln, NE.
3 Rezaie, F., and M. Panahi, 2015. GIS modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decision-making techniques. Natural Hazards and Earth System Sciences 15(3): 461-474. doi:10.5194/nhessd-2-5903-2014.   DOI
4 Zhao, J., Q. Zhang, X. Zhu, Z. Shen, and H. Yu, 2020. Drought risk assessment in China: Evaluation framework and influencing factors. Geography and Sustainability 1(3): 220-228. doi:10.1016/j.geosus.2020.06.005.   DOI
5 Saaty, T. L., 2000. Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS Publications, Pittsburgh, PA, USA 478.
6 Nam, W. H., T. G. Kim, J. Y. Choi, and J. J. Lee, 2012. Vulnerability assessment of water supply in agricultural reservoir utilizing probability distribution and reliability analysis methods. Journal of the Korean Society of Agricultural Engineers 54(2): 37-46 (in Korean). doi:10.5389/KSAE.2012.54.2.037.   DOI
7 Nardo, M., M. Saisana, A. Saltelli, S. Tarantila, A. Hoffman, and E. Giovannini, 2005. Handbook on constructing composite indicators: Methodology and user guide. OECD Statistics Working Papers 2005/3.
8 Park, H. S., J. B. Kim, M. J. Um, and Y. J. Kim, 2016. Assessment of water use vulnerability in the unit watersheds using TOPSIS approach with subjective and objective weights. Journal of Korea Water Resources Association 49(8): 685-692 (in Korean). doi:10.3741/JKWRA.2016.49.8.685.   DOI
9 Shim, I. T., B. C. Hong, E. J. Kim, and T. M. Hwang, 2019. Vulnerability assessment of drought of small island areas in Korea. Journal of Korean Society of Water and Wastewater 33(5): 341-351 (in Korean). doi:10.11001/jksww.2019.33.5.341.   DOI
10 Kim, S. M., M. S. Kang, and M. W. Jang, 2018. Assessment of agricultural drought vulnerability to climate change at a municipal level in South Korea. Paddy and Water Environment 16: 699-714. doi:10.1007/s10333-018-0661-z.   DOI
11 Shin, H. J., J. Y. Lee, S. M. Jo, S. M. Jeon, M. S. Kim, S. S. Cha, and C. G. Park, 2019. Vulnerability evaluation of groundwater well efficiency and capacity in drought vulnerable areas. Journal of the Korean Society of Agricultural Engineers 61(6): 41-53 (in Korean). doi:10.5389/KSAE.2019.61.6.041.   DOI
12 Shin, J. H., W. H. Nam, N. K. Bang, H. J. Kim, H. U. Anh, and K. Y. Lee, 2020. Assessment of irrigation efficiency and water supply vulnerability using SWMM. Journal of the Korean Society of Agricultural Engineers 62(6): 73-83 (in Korean). doi:10.5389/KSAE.2020.62.6.073.   DOI
13 Wang, Y., W. Zhao, Q. Zhang, and Y. Yao, 2019. Characteristics of drought vulnerability for maize in the eastern part of Northwest China. Scientific Reports 9: 964. doi:10.1038/s41598-018-37362-4.   DOI
14 Yu, C., X. Huang, H. Chen, G. Huang, S. Ni, J. S. Wright, J. Hall, P. Ciais, J. Zhang, Y. Xiao, Z. Sun, X. Wang, and L. Yu, 2018. Assessing the impacts of extreme agricultural drought in China under climate and socioeconomic change. Earth's Future 6: 689-703. doi:10.1002/2017EF000768.   DOI
15 Wilhelmi, O. V., and D. A. Wilhite, 2002. Assessing vulnerability to agricultural drought: a Nebraska case study. Natural Hazards 25: 37-58.   DOI
16 Won, K. J., J. H. Sung, and E. S. Chung, 2015. Parameteric assessment of water use vulnerability of South Korea using SWAT model and TOPSIS. Journal of Korea Water Resources Association 48: 647-657 (in Korean). doi:10.3741/JKWRA.2015.48.8.647.   DOI
17 Yang, J. S., and I. H. Kim, 2013. Development of drought vulnerability index using Delphi method considering climate change and trend analysis in Nakdong river basin. Journal of the Korean Society of Civil Engineers 33(6): 2245-2254 (in Korean). doi:10.12652/Ksce.2013.33.6.2245.   DOI
18 Hong, E. M., W. H. Nam, J. Y. Choi, and Y. A. Pachepsky, 2016. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea. Agricultural Water Management 165: 163-180. doi:10.1016/j.agwat.2015.12.003.   DOI
19 Geng, G., J. Wu, Q. Wang, T. Lei, B. He, X. Li, X. Mo, H. Y. Luo, H. Zhou, and D. Liu, 2016. Agricultural drought hazard analysis during 1981-2008: a global perspective. International Journal of Climatology 36: 389-399. doi:10.1002/joc.4356.   DOI
20 Hagenlocher, M., I. Meza, C. C. Anderson, A. Min, F. G. Renaud, Y. Walz, S. Siebert, and Z. Sebesvari, 2019. Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environmental Research Letters 14: 083002. doi:10.1088/1748-9326/ab225d.   DOI
21 Kim, H. S., G. J. Park, S. D. Kim, M. H. Choi, M. J. Park, and J. Y. Yoon, 2012. Assessment of flood vulnerability considering climate change and large-scale river restoration project. Journal of The Korean Society of Hazard Mitigation 12(2): 107-113 (in Korean). doi:10.9798/KOSHAM.2012.12.2.107.   DOI
22 Jang, J. S., 2019. Hydrometeorological characteristics and the spatial distribution of agricultural droughts. Journal of the Korean Society of Agricultural Engineers 61(2): 105-115 (in Korean). doi:10.5389/KSAE.2019.61.2.105.   DOI
23 Kim, S. J., T. Y. Park, S. M. Kim, and S. M. Kim, 2012. The proxy variables selection of vulnerability assessment for agricultural infrastructure according to climate change. Korean National Committee on Irrigation and Drainage Journal 18(2): 33-42 (in Korean).
24 Mun, Y. S., W. H. Nam, M. G. Jeon, H. J. Kim, K. Kang, J. C. Lee, T. H. Ha, and K. Y. Lee, 2020a. Evaluation of regional drought vulnerability assessment based on agricultural water and reservoirs. Journal of the Korean Society of Agricultural Engineers 62(2): 97-109 (in Korean). doi:10.5389/KSAE.2020.62.2.97.   DOI
25 Intergovernmental Panel on Climate Change (IPCC), 2001. Climate change 2001: The scientific basis. Contribution of Working Group 1 to the Third Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
26 Jang, M. W., 2006. County-based vulnerability evaluation to agricultural drought using principal component analysis-The case of Gyeonggi-do-. Journal of Korean Society of Rural Planning 12(1): 37-48 (in Korean).
27 Kim, J. U., J. Y. Lee, and S. J. Kim, 2019. Evaluation of the future agricultural drought severity of South Korea by using Reservoir Drought Index (RDI) and climate change scenarios. Journal of Korea Water Resources Association 52(6): 381-395 (in Korean). doi:10.3741/JKWRA.2019.52.6.381.   DOI
28 Lee, K. S., T. H. Kim, H. G. Kang, and J. K. Jung, 2015. A study on selection of the risk factors for urban disaster of Daejeon metropolitan city using Delphi and AHP. Journal of Safety and Crisis Management 11(4): 69-84 (in Korean).
29 Lee, S. H., J. E. Eun, H. J. Bae, and D. K. Yoon, 2015. Vulnerability assessment of the air pollution using entropy weights: Focused on ozone. Journal of the Korean Association of Regional Geographers 21(4): 751-763 (in Korean).
30 Meza, I., S. Siebert, P. Doll, J. Kusche, C. Herbert, E. E. Rezaei, H. Nouri, H. Gerdener, E. Popat, J. Frischen, G. Naumann, J. V. Vogt, Y. Walz, Z. Sebesvari, and M. Hagenlocher, 2020. Global-scale drought risk assessment for agricultural systems. Natural Hazards and Earth System Sciences 20: 695-712. doi:10.5194/nhess-20-695-2020.   DOI
31 Mun, Y. S., W. H. Nam, T. G. Kim, E. M. Hong, and C. Y. Sur, 2020b. Evaluation and comparison of meteorological drought index using multi-satellite based precipitation products in East Asia. Journal of the Korean Society of Agricultural Engineers 62(1): 85-95 (in Korean). doi:10.5389/KSAE.2020.62.1.085.   DOI
32 Nam, W. H., E. M. Hong, and J. Y. Choi, 2014. Uncertainty of water supply in agricultural reservoirs considering the climate change. Journal of the Korean Society of Agricultural Engineers 56(2): 11-23 (in Korean). doi:10.5389/KSAE.2014.56.2.011.   DOI
33 Nam, W. H., J. Y. Choi, M. W. Jang, and E. M. Hong, 2013. Agricultural drought risk assessment using reservoir drought index. Journal of the Korean Society of Agricultural Engineers 55(3): 41-19 (in Korean). doi:10.5389/KSAE.2013.55.3.041.   DOI
34 Nam, W. H., M. J. Hayes, D. A. Wilhite, and M. Svoboda, 2015. Projection of temporal trends on drought characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea. Journal of the Korean Society of Agricultural Engineers 57(1): 37-45 (in Korean). doi:10.5389/KSAE2015.57.1.037.   DOI