• Title/Summary/Keyword: vulnerability index

Search Result 257, Processing Time 0.025 seconds

제주도 서부지역의 지하수 오염취약성 작성 연구

  • Lee Yong-Du;Song Hui-Gyeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.316-318
    • /
    • 2006
  • The purpose of this research is to write out vulnerability for western area in Jeju island by using drastic method which is the most frequently utilized among the writing techniques of underground water vulnerability. In case of aquifer, it was divided into two types, gravel layer or not and rated. And soil media was rated two kinds of method. Plan 1 is concerned with only soil class and plan 2 is concerned with soil class and gravels (or rocks), Vadose zone was rated differently according to the ratio of gravel layer. In case of plan 1, the scope of drastic index is from the minimum 77 to the maximum 176, on the other hand, plan 2, the scope of drastic index is from the minimum 79 to the maximum 182. In case of using the water quality data of Nitrate from 1994 to 2004, Pearson correlation coefficient are 0.164(Plan 1) and 0.124(Plan 2) and Spearman correlation coefficient are 0.132(Plan 1) and 0.113.

  • PDF

Development and the Application of Flood Disaster Risk Reduction Index (홍수피해저감지수(FDRRI) 개발 및 시범적용)

  • Moon, Seung-Rok;Yang, Seung-Man;Choi, Seon-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.64-69
    • /
    • 2014
  • Community-based disaster preparedness approaches are increasingly important elements of vulnerability reduction and disaster strategies. They are associated with a policy trend that values the knowledge and capacities of local people. In this research, we describe the community diagnosis method and develop Flood Disaster Risk Reduction Index(FDRRI) for assessment of flood vulnerability. FDRRI is composed of four indicators such as Flood Exposure Indicator(FEI), Sensitivity Indicator(SI), Risk Reduction Indicator(RRI), and Community Preparedness Indicator(CPI). We anticipate to present the guideline for selection national preparedness projects and uplift community's preparedness capacity.

Analysis of Climate Characteristics Observed over the Korean Peninsula for the Estimation of Climate Change Vulnerability Index (기후변화 취약성 지수 산출을 위한 한반도 관측 기후 특성 분석)

  • Nam, Ki-Pyo;Kang, Jeong-Eon;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.891-905
    • /
    • 2011
  • Climate vulnerability index is usually defined as a function of the climate exposure, sensitivity, and adaptive capacity, which requires adequate selection of proxy variables of each variable. We selected and used 9 proxy variables related to climate exposure in the literature, and diagnosed the adequacy of them for application in Korean peninsula. The selected proxy variables are: four variables from temperature, three from precipitation, one from wind speed, and one from relative humidity. We collected climate data over both previous year (1981~2010) and future climate scenario (A1B scenario of IPCC SERES) for 2020, 2050, and 2100. We introduced the spatial and temporal diagnostic statistical parameters, and evaluated both spatial and time variabilities in the relative scale. Of 9 proxy variables, effective humidity indicated the most sensitive to climate change temporally with the biggest spatial variability, implying a good proxy variable in diagnostics of climate change vulnerability in Korea. The second most sensitive variable is the frequency of strong wind speed with a decreasing trend, suggesting that it should be used carefully or may not be of broad utility as a proxy variable in Korea. The A1B scenario of future climate in 2020, 2050 and 2100 matches well with the extension of linear trend of observed variables during 1981~2010, indicating that, except for strong wind speed, the selected proxy variables can be effectively used in calculating the vulnerability index for both past and future climate over Korea. Other local variabilities for the past and future climate in association with climate exposure variables are also discussed here.

Development of Flood Vulnerability Index Considering Climate Change (기후변화를 고려한 홍수취약성지표의 개발)

  • Son, Min-Woo;Sung, Jin-Young;Chung, Eun-Sung;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.231-248
    • /
    • 2011
  • This study aims to develop the Flood Vulnerability Index (FVI) and apply it to the Bukhan River Basin. A1B and A2 scenarios of CGCM3 of IPCC were adopted and SDSM (Statistical Downscaling Model) was used to downscale the original data to the daily data. Driver-Presure-State-Impact-Response (DPSIR) model was introduced to select all appropriate indicators for FVI and the daily rainfall-runoff model was simulated using HSPF (Hydrological Simulation Program-Fortran). Since FIV proposed in this study has a capability to quantify the potential flood vulnerability considering both present and future climate conditions, it is expected to be used for the comprehensive water resources and environmental planning.

Vulnerability Assessment of Water Quality and Aquatic Ecosystem to Climate Change in Korea using Proxy Variables (대리변수를 이용한 한반도 수질 및 수생태계 부문의 기후변화 취약성 평가)

  • Lee, Keon Haeng;Chung, Eu Gene;Kim, Kyunghyun;Yu, Jeong Ah;Lee, Eun Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.444-452
    • /
    • 2012
  • This study aims at assessing vulnerability of water quality and aquatic ecosystem to climate change by using proxy variables. Vulnerability to climate change is defined as a function of exposure to climate, sensitivity, and adaptive capacity. Detailed proxy variables were selected considering availability and then standardized by re-scaling concept. After adequate weights were assigned to standardized proxy variables by Delphi technique, vulnerability index was calculated. As results, vulnerability of adjacent regions to coastal areas include water quality and aquatic ecosystem is relatively higher than that of inland areas, and especially adjacent region to the western and southeast seas, and Jeju show high vulnerabilities. Vulnerability in the future was performed based on A1B scenario (IPCC, 2000). Temporally, the increase of vulnerability from 2050s to 2100s may be larger than the increase from 2000s to 2050s. Because vulnerability index was estimated through the relationship among various proxy variables, it is important to consider characteristics of local region with measurements and policies for reduction of sensitivity and enhancement of adaptive capacity on climate change. This study is expected to be useful in planning adaptation measures and selecting priority to the policy on climate change.

Analysis of Non-monotonic Phenomena of Resilience and Vulnerability in Water Resources Systems (수자원시스템의 회복도 및 취약도 증감현상 해석)

  • Lee, Gwang-Man;Cha, Kee-Uk;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.183-193
    • /
    • 2013
  • Selecting the evaluation index to determine water resources system design yield is an important problem for water resources engineers. Reliability, resilience and vulnerability are three widely used indices for yield analysis. However, there is an overlap region between indices as well as resilience and vulnerability can show improvement in non-monotonic phenomena although yield condition becomes worse. These problems are usually not recognized and the decisions are made according to calculated estimates in real situation. The reason for this is caused by a diverse characteristics of water resources system such as seasonal variability of hydrologic characteristics and water demands. In this study, the applicability of resilience and vulnerability for multi indices application in addition to reliability which is applied generally is examined. Based on highly seasonal irrigation water demand ratio, the correlation and non-monotonic phenomena of each index are analyzed for seven selected reservoirs. Yongdam reservoir which supplies constant water supply showed the general tendency, but Chungju, Andong, Namgang and other reservoirs which supplies irrigation water showed clear non-monotonic phenomena in resilience and vulnerability.

Climate Change Vulnerability Assessment of Cool-Season Grasslands Based on the Analytic Hierarchy Process Method

  • Lee, Bae Hun;Cheon, Dong Won;Park, Hyung Soo;Choi, Ki Choon;Shin, Jeong Seop;Oh, Mi Rae;Jung, Jeong Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.189-197
    • /
    • 2021
  • Climate change effects are particularly apparent in many cool-season grasslands in South Korea. Moreover, the probability of climate extremes has intensified and is expected to increase further. In this study, we performed climate change vulnerability assessments in cool-season grasslands based on the analytic hierarchy process method to contribute toward effective decision-making to help reduce grassland damage caused by climate change and extreme weather conditions. In the analytic hierarchy process analysis, vulnerability was found to be influenced in the order of climate exposure (0.575), adaptive capacity (0.283), and sensitivity (0.141). The climate exposure rating value was low in Jeju-do Province and high in Daegu (0.36-0.39) and Incheon (0.33-0.5). The adaptive capacity index showed that grassland compatibility (0.616) is more important than other indicators. The adaptation index of Jeollanam-do Province was higher than that of other regions and relatively low in Gangwon-do Province. In terms of sensitivity, grassland area and unused grassland area were found to affect sensitivity the most with index values of 0.487 and 0.513, respectively. The grassland area rating value was low in Jeju-do and Gangwon-do Province, which had large grassland areas. In terms of vulnerability, that of Jeju-do Province was lower and of Gyeongsangbuk-do Province higher than of other regions. These results suggest that integrating the three aspects of vulnerability (climate exposure, sensitivity, and adaptive capacity) may offer comprehensive and spatially explicit adaptation plans to reduce the impacts of climate change on the cool-season grasslands of South Korea.

Development of Operation Rules in Agricultural Reservoirs using Real-Time Water Level and Irrigation Vulnerability Index (실시간 저수위 및 용수공급 취약성 지표를 활용한 농업용 저수지 운영 기준 개발)

  • Nam, Won Ho;Choi, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.77-85
    • /
    • 2013
  • The efficient operation and management strategies of reservoirs in irrigation periods of drought events are an essential element for drought planning and countermeasure. Korea Rural Community Corporation has developed the real-time water level observation system of agricultural reservoirs to efficiently operate reservoirs, however, it is not possible to predict drought conditions, and only provides information of current situation. Hence, it is necessary to evaluate accurate irrigation vulnerability and efficiently reservoir operation rules using current water level. In this paper, the improvement methods of reservoir operation planning were developed with water supply vulnerability characteristic curves comparing to automatic water gauge at agricultural reservoirs. The 11 reservoirs were simulated applying the reservoir operation rules which was determined by irrigation vulnerability characteristic curves criteria and real time water level, and evaluated water supply situation in 2012 year. The analysis of results can be identified probabilistic possibility of water supply failures compared with the existing reservoir operation criteria. These results of efficient reservoir operation rules can be achieved enable irrigation planners to optimally manage available water resources for decision making, and contributed to maintain the water supply according to demand strategy for agricultural reservoirs management.

GIS overlay analysis for hazard assessment of drought in Iran using Standardized Precipitation Index (SPI)

  • Asrari, Elham;Masoudi, Masoud;Hakimi, Somaye Sadat
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • The Standardized Precipitation Index (SPI) is a widely used drought index to provide good estimations of the intensity, magnitude and spatial extent of droughts. The objective of this study was to analyze the spatial pattern of drought by SPI index. In this paper, the patterns of drought hazard in Iran are evaluated according to the data of 40 weather stations during 1967-2009. The influenced zone of each station was specified by the Thiessen method. It was attempted to make a new model of drought hazard using GIS. Three criteria for drought were studied and considered to define areas of vulnerability. Drought hazard criteria used in the present model included: maximum severity of drought in the period, trend of drought, and the maximum number of sequential arid years. Each of the vulnerability indicators were mapped and these as well as a final hazard map were classified into 5 hazard classes of drought: one, slight, moderate, severe and very severe. The final drought vulnerability map was prepared by overlaying three criteria maps in a GIS, and the final hazard classes were defined on the basis of hazard scores, which were determined according to the means of the main indicators. The final vulnerability map shows that severe hazard areas (43% of the country) which are observed in the west and eastern parts of country are much more widespread than areas under other hazard classes. Overall, approximately half of the country was determined to be under severe and very severe hazard classes for drought.

A Improvement Study on the Medical Information Protection Using Personal Information Management System(PIMS) : Focus on medical practitioners (개인정보보호관리체계(PIMS)를 이용한 의료정보보호 개선 방안 연구 : 의료기관 종사자를 중심으로)

  • Min, Kyeongeun;Kim, Sungjun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.87-109
    • /
    • 2016
  • This study intends to present an effective and efficient development plan about the information protection of medical institutions, by establishing the improvement plan about Personal Information Management System(PIMS) appropriate to the characteristics of medical information focusing on medical institutions generating and using domestic medical information, and doing an empirical study on medical information protection plan. For this, in view of the medical characteristics of the existing Information Security Management System(ISMS), the study presented a study model appropriated to medical institutions based on Personal Information Management Systems index specialized for personal information, and through this, presented the vulnerability diagnosis and vulnerability improvement plan. Based on ISMS index, it designed an improvement index of personal information protection management about each index. The study conducted a survey for executives and employees about PIMS. Accordingly, it presented vulnerability diagnosis items of the current management system indexes from the viewpoint of the people who establish and mange the personal information protection about patients' medical information targeting executives and employees who serve at hospitals and can access medical information.