• Title/Summary/Keyword: vorticity

Search Result 529, Processing Time 0.022 seconds

Comparison of Two Viscous Models for Vortex Methods (와법에 사용되는 2가지 점성모델의 비교)

  • Jung, Jae-Hoon;Yoon, Jin-Sup;Jin, Dong-Sik;Ahn, Cheol-O;Lee, Sang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.518-523
    • /
    • 2001
  • Vortex methods were originally conceived as a tool to model the evolution of unsteady, incompressible, high Reynolds number flows of engineering interest. Recently various methods have been proposed for simulating the diffusion in vortex methods for two-dimensional incompressible flows. We test the diffusion schemes of vortex methods. In this paper we directly compare the particle strength exchange scheme with the vorticity redistribution scheme in tenus of their accuracy and computational efficiency. Comparisons between both viscous models described are presented for short-time runs of impulsively started flows past a circular cylinder for Reynolds number of 60. The particle strength exchange scheme has been shown more accurate and efficient than the vorticity redistribution scheme.

  • PDF

Simulation of Viscous Flow Past NACA 0012 Poil using a Vortex Particle Method (보오텍스 방법에 의한 순간 출발하는 2차원 날개 주위의 점성유동 모사)

  • Lee S. J.;Kim K. S.;Suh J. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.161-165
    • /
    • 2004
  • In the vortex particle method based on the vorticity-velocity formulation for solving the Wavier-Stokes equations, the unsteady, incompressible, viscous laminar flow over a NACA 0012 foil is simulated. By applying an operator-splitting method, the 'convection' and 'diffusion' equations are solved sequentially at each time step. The convection equation is solved using the vortex particle method, and the diffusion equation using the particle strength exchange(PSE) scheme which is modified to avoid a spurious vorticity flux. The scheme is improved for variety body shape using one image layer scheme. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsively started NACA 0012 foil for Reynolds number 550.

  • PDF

AUTOMATIC NEURAL NETWORK SYSTEM FOR VORTICITY OF SQUARE CYLINDERS WITH DIFFERENT CORNER RADII

  • Y.El-Bakry, Mostafa.;El-Harby, A.A.;Behery, G.M.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.911-923
    • /
    • 2008
  • The neural networks (NNs) simulation has been designed to simulate and predict the vortex wavelength ${\lambda}_x^*$, lateral vortex spacing ${\lambda}_y^*$, and normalized maximum vorticity at the vortex center near the wake of square cylinders with different corner radii. The system was trained on the available data of the three cases, although this data is very little. Therefore, we designed the system to work in automatic way for finding the best network that has the ability to have the best test and prediction. The proposed system shows an excellent agreement with that of an experimental data in these cases. The technique has been also designed to simulate the other distributions not presented in the training set and predicted them with effective matching.

  • PDF

An Analysis of 2-D Bluff Bodies Flows by Multi-Vision PIV (Multi-Vision PIV에 의한 2차원 단순물체의 유동장 해석)

  • Song, K.T.;Lee, H.;Kim, Y.T.;Lee, Y.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.573-580
    • /
    • 2002
  • Animation and time-resolved analysis of the wake characteristics of 2-D bluff body flows were examinated by applying the multi-vision PIV to square cylinders(three angles of attack: $0^{circ}, 30^{circ} and 45^{\circ}$) and circular cylinders(three rotating speeds: 0rpm, 76rpm, 153rpm) submerged within a circulating water channel $(Re=10^4)$, The macroscopic shedding patterns and their dominant frequencies were discussed in terms of instantaneous velocity, vorticity and turbulent quantities such as turbulent intensity, turbulent kinetic energy and three Reynolds stresses. Particularly the time-averaged distribution of turbulent intensity 'islands' where their peak magnitudes were focused always small regions behind the bodies without noticeable spatial migration were particularly discovered in all cases. And the dominant frequencies of the turbulent quantities in the wake regions were two times larger than those of the velocity and vorticity.

Basic flow fields and stability characteristics of two dimensional V flames (이차원 V 화염의 기본 유동장과 안정화 특성)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong;Kim, Moon-Uhn
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.185-193
    • /
    • 2003
  • Basic flow fields of two dimensional V flames were examined as a preliminary work to study the instability of premixed flame with vorticity generation. Laminar premixed propane and methane flame were anchored by electrically heated wire to make two dimensional V flames. Flow fields were measured mainly by PIV(Particle Image Velocimetray) and the results were compared with those obtained by LDV(Laser Doppler Velocimetry) to confirm their reliability. Because the curvatures of V flames are so small, V flames were locally assumed to be inclined planar flames in gravitational field. The measured flow fields were locally compared with those of analytical solutions, which showed the qualitatively similar results. In downstream region, the vorticity fields were nearly constant except region near the center line, which support the assumption of locally one dimensional flame. Besides it was tried to find experimentally the similarity of flow fields in downstream region. Finally, stability diagram of propane and methane flames were drawn for the equivalence ratio less than one and the wide range of mean velocity.

  • PDF

Dynamic PIV Measurement of Swirl Flow in a PC Fan

  • ARAMAKI Shinichiro;HAYAMI Hiroshi
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.41-45
    • /
    • 2004
  • The dynamic particle image velocimetry (PIV) is consisted of a high frequency pulse laser, high speed cameras and a timing controller. The three velocity components of flow downstream of an axial flow fan for PC cooling system are measured using the dynamic PIV system. An Axial flow fan has seven blades of 72 mm in diameter. The rotating speed is 1800 rpm. The downstream flow is visualized by smoke particles of about $0.3-1\;{\mu}m$ in diameter. The three-dimensional instantaneous velocity fields are measured at three downstream planes. The swirl velocity component was diffused downstream and the change in time-mean vorticity distribution downstream was also discussed. The spatio-temporal change in axial velocity component with the blades passing is recognized by the instantaneous vector maps. And the dynamic behavior of vorticity moving with the rotating blades is discussed using the unsteady vorticity maps.

  • PDF

Computation of pressure fields in application of the Lagrangian vortex method (Lagrangian 보우텍스방법에서의 압력장계산)

  • Kim K. S.;Lee S. J.;Suh J. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.37-42
    • /
    • 2003
  • A vorticity-velocity integro-differential formulation of incompressible Wavier-Stokes equations is described, focusing on a scheme for calculating pressure fields in application of the Lagrangian vortex method in connection with panel methods. It deals with the dynamic coupling among velocity, vorticity and pressure, and the Helmholtz decomposition of the velocity field, through a comparative study with the Eulerian finite volume method, we provide an extensive understanding of the Lagrangian vortex methods for numerical simulations of viscous flows around arbitrary bodies.

  • PDF

Numerical study of Flow around Impulsively Started Elliptic Cylinder using Vortex Particle Method (입자와법에 의한 급 출발하는 타원형 실린더 주위 유동해석)

  • Joo, Nam-Soo;Lee, Sang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1601-1606
    • /
    • 2004
  • In this paper, the unsteady behavior of the viscous flow field past an impulsively started elliptic cylinder is studied numerically. In order to analyze flow field, we introduce vortex particle method. The vorticity transport equation is solved by fractional step algorithm which splits into convection term and diffusion term. The convection term is calculated with Biot-Savart law, the no-through boundary condition is employed on solid boundaries. The diffusion term is modified based on the scheme of particle strength exchange. The particle redistributed scheme for general geometry is adapted. The flows around an elliptic cylinder are investigated for various attack angles at Reynolds number 200. The comparison between numerical results of present study and experimental data shows good agreements.

  • PDF

Numerical Study of Flow Around Impulsively Started Elliptic Cylinder Using Vortex Particle Method (입자와법에 의한 급 출발하는 타원형 실린더 주위 유동해석)

  • Lee, Sang-Hwan;Joo, Nam-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.809-817
    • /
    • 2004
  • In this paper, the unsteady behavior of the viscous flow field past an impulsively started elliptic cylinder is studied numerically. In order to analyze flow field, we introduce vortex particle method. The vorticity transport equation is solved by fractional step algorithm which splits into convection term and diffusion term. The convection term is calculated with Biot-Savart law, the no-through boundary condition is employed on solid boundaries. The diffusion term is modified based on the scheme of particle strength exchange. The particle redistributed scheme for general geometry is adapted. The flows around an elliptic cylinder are investigated for various attack angles at Reynolds number 200. The comparison between numerical results of present study and experimental data shows good agreements.

GLOBAL VORTICITY EXISTENCE OF A PERFECT INCOMPRESSIBLE FLUID IN B0∞,1(ℝ2)∩Lp(ℝ2)

  • Pak, Hee Chul;Kwon, Eun-Jung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.271-277
    • /
    • 2010
  • We prove the global (in time) vorticity existence for the 2-D Euler equations of a perfect incompressible fluid in $B^0_{{\infty},1}({\mathbb{R}}^2){\cap}L^p({\mathbb{R}}^2)$ with 1 < p < 2. Moreover, we prove that the particle trajectory map X(x, t) satisfies the following estimate: for some positive constant C $${\parallel}X^{\pm1}(\cdot,\;t)-id(\cdot){\parallel}_{B^1_{\infty,1}}{\leq}Ce^{e^{Ct}}$$, where id represents the identity map on ${\mathbb{R}}^2$.