• Title/Summary/Keyword: volumetric water content sensor

Search Result 22, Processing Time 0.035 seconds

Development of Portable Multi-function Sensor (Mini CPT Cone + VWC Sensor) to Improve the Efficiency of Slope Inspection (비탈면 점검 효율화를 위한 휴대형 복합센서 개발)

  • Kim, Jong-Woo;Jho, Youn-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • In order to efficiently analysis the stability of a slope, measuring the shear strength of soil is needed. The Standard Penetration Test (SPT) is not appropriate for a slope inspection due to cost and weights. One of the ways to effectively measure the N-value is the Dynamic Cone Penetration Test (DCPT). This study was performed to develop a minimized multi-function sensors that can easily estimate CPT values and Volumetric Water Content. N value with multi-fuction sensor DCPT showed -2.5 ~ +3.9% error compared with the SPT N value (reference value) in the field tests. Also, the developed multi-fuction sensor system was tested the correlation between the CPT test and the portable tester with indoor test. The test result showed 0.85 R2 value in soil, 0.83 in weathered soil, and 0.98 in mixed soil. As a result of the field test, the multi-function sensor shows the excellent field applicability of the proposed sensor system. After further research, it is expected that the portable multi-function sensor will be useful for general slope inspection.

Verification of TDR and FDR Sensors for Volumetric Soil Water Content Measurement in Sandy Loam Soil (사양토에서의 용적수분 함량 측정을 위한 TDR 및 FDR 센서의 검증)

  • Hur, Seung-Oh;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.110-116
    • /
    • 2009
  • This study was to verify and calibrate seven kinds of soil water sensors for volumetric soil water content(VSWC) measurement under field. Types of sensors were TDR (Time Domain Reflectometry) and FDR(Frequency Domain Reflectometry). Two kinds of TDR were TRIME(profile type), and Mini-TRASE(rod type). Five kinds of FDR were EasyAG, EnviroSCAN, PR-1(profile type), and WET-1(rod type). VSWC by TRIME and Mini-TRASE compared with VSWC by soil core showed the standard error of about 2.4%, and 1.4% which is the smallest value among all the sensors used in the experiment, respectively. The errors of EasyAG and EnviroSCAN analyzed with scaled frequency(SF) were about 2.6%, and 2.8% and those by 1 versus 1 correspondence were about 2.6%, and 2.6%, respectively. WET-1 showed about 2.0% of error, which is the smallest value among errors by FDR sensors. PR-1 with the error of about 4.7% should be hard for application in field. Therefore, users on soil water sensors have to take into consideration the errors of sensors revealed after the calibration for the correct measurement of VSWC in field. The rest except for PR-1 among the sensors could be used for VSWC measurement with 1.4~2.6% error.

A Study on the Geotechnical Property caused by Contact Volume between Weathered Soils and Moisture Sensor for Application of Field Monitoring (현장 모니터링 적용을 위한 풍화토와 함수비센서의 접촉체적에 따른 지반물성 연구)

  • Kim, Man-Il;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.311-319
    • /
    • 2008
  • Evaluation of an amplitude domain reflectometry (ADR) type soil moisture sensor as ThetaProbe ML2x using the response of frequency impedance was performed in a variety of soil porous media such as Jumunjin standard sand, weathered granite soil at Sangju area, and weathered gneiss soil at Jangsu area. The tested soils were classified with a dried condition and a wetted condition for comparing with soil volumetric water content under different installed depths of the measurement sensor. In the results the part of measurement rod including one signal rod and three shield rod 6cm in length was found to decrease the variation of measurement output voltage with insert 5cm over into the soil porous media. The measurement output voltage was verified to more stable output voltage under weathered granite soils and weathered gneiss soils contained the fine grain materials such as clay and silt minerals than the gradual grain material like as the standard sands. Therefore, measurement values by soil moisture sensor can be offered the more stable values when an contact volume between soil porous media and measurement sensor increase.

Scheduling Non-drainage Irrigation in Coir Substrate Hydroponics with Different Percentages of Chips and Dust for Tomato Cultivation using a Frequency Domain Reflectometry Sensor (토마토 수경재배에서 FDR(Frequency Domain Reflectometry) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 Chip과 Dust 비율 구명)

  • Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • This study examined an automated irrigation technique by a frequency domain reflectometry (FDR) sensor for scheduling irrigation for tomato (Solanum lycopersicum L. 'Starbuck F1') cultivation aimed at avoiding effluent from an open hydroponic system with coir substrate containing different ratios of chip-to-dust (v/v) content. Specifically, the objectives were to undertake preliminary measurements of irrigation volumes, leachate volume, volumetric water content and electrical conductivity (EC) in the substrate, plant growth, fruit yield, and water use efficiency resulting from variation in chip content as an initial experiment. Commercial coir substrates containing different percentages of chips and dust (0 and 100%, 30 and 70%, 50 and 50%, or 70 and 30%), two-story coir substrates with different percentages of chips in the lower layer and dust in the upper layer (15 and 85%, 25 and 75%, or 35 and 65%), or rockwool slabs were used. The results showed that a negligible or no leachate was found for all treatments when plants were grown under a technique for scheduling non-drainage irrigation using a frequency domain reflectometry (FDR) sensor. Daily irrigation volume was affected by chip content in both commercial and two-story slabs. The highest plant growth, marketable fruit weight, and water-use efficiency were observed in the plants grown in the commercial coir slab containing 0% chips and 100% dust, indicating that the FDR sensor-auto-mated irrigation may be more useful for tomato cultivation in coir substrate containing 0% chips and 100% dust using water efficiently and minimizing or avoiding leachate and thus increasing yield and reducing pollution. Detailed experiment is necessary to closely focus on determining appropriate irrigation volume at each of irrigation as well as duration of each individual irrigation cycle depending on different physical properties of substrates using an automated irrigation system operated by the FDR sensor.

A Wireless Sensor Network Technique and its Application in Regional Landslide Monitoring (광역적 산사태 모니터링을 위한 무선센서네트워크 기술의 적용)

  • Jeong, Sang-Seom;Hong, Moon-Hyun;Kim, Jung-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.19-32
    • /
    • 2018
  • In this study, the applicability and practicality of landslides monitoring by using wireless sensor network (WSN) was analysed. WSN system consists of a sensor node for collecting and transmitting data using IEEE 802.14e standard, a gateway for collecting data and transmitting the data to the monitoring server. In the topology of the sensor network, a highly flexible and reliable mesh type was adopted, and three testbeds were chosen in each location of Seoul metropolitan area. Soil moisture sensors, tensiometers, inclinometers, and a rain gauge were installed at each testbed and sensor node to monitor the landslide. For the estimation of the optimal network topology between sensor nodes, the susceptibility assessment of landslides, forest density and viewshed analysis of terrain were conducted. As a result, the network connection works quite well and measured value of the volumetric water content and matric suction simulates well the general trend of the soil water characteristic curve by the laboratory test. As such, it is noted that WSN system, which is the reliable technique, can be applied to the landslide monitoring.

Study on the Method of Diagnosing the Individuals Crop Growth Using by Multi-Spectral Images

  • Dongwon Kwon;Jaekyeong Baek;Wangyu Sang;Sungyul Chang;Jung-Il Cho;Ho-young Ban;HyeokJin Bak
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.108-108
    • /
    • 2022
  • In this study, multispectral images of wheat according to soil water state were collected, compared, and analyzed to measure the physiological response of crops to environmental stress at the individual level. CMS-V multi-spectral camera(Silios Technologies) was used for image acquisition. The camera lens consists of eight spectral bands between 550nm and 830nm. Light Reflective information collected in each band sensor and stored in digital values, and it is converted into a reflectance for calculating the vegetation index and used. According to the camera manual, the NDVI(Normalized Difference vegetation index) value was calculated using 628 nm and 752 nm bands. Image measurement was conducted under natural light conditions, and reflectance standards(Labsphere) were captured with plants for reflectance calculation. The wheat variety used Gosomil, and the wheat grown in the field was transplanted into a pot after heading date and measured. Three treatments were performed so that the soil volumetric water content of the pot was 13~17%, 20~23%, and 25%, and the growth response of wheat according to each treatment was compared using the NDVI value. In the first measurement after port transplantation, the difference in NDVI value according to treatment was not significant, but in the subsequent measurement, the NDVI value of the treatment with a water content of 13 to 17% was lowest and was the highest at 20 to 23%. The NDVI values decreased compared to the first measurement in all treatment, and the decrease was the largest at 13-17% water content and the smallest at 20-23%. Although the difference in NDVI values could be confirmed, it would be difficult to directly relate it to the water stress of plants, and further research on the response of crops to environmental stress and the analysis of multi-spectral image will be needed.

  • PDF

Landslide Analysis Using the Wetting-Drying Process-Based Soil-Water Characteristic Curve and Field Monitoring Data (현장 함수비 모니터링과 습윤-건조 함수특성곡선을 이용한 산사태 취약성 분석)

  • Lee, Seong-Cheol;Hong, Moon-Hyun;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.13-26
    • /
    • 2023
  • This study examined the soil-water characteristic curve (SWCC), considering the volume change, using wetting curves on the field monitoring data of a wireless sensor network. Special attention was given to evaluating the landslide vulnerability by deriving a matric suction suitable for the actual site during the wetting process. Laboratory drying SWCC and shrinkage laboratory tests were used to perform the combined analysis of landslide and debris flow. The results showed that the safety factor of the wetting curve, considering the volume change of soil, was lower than that of the drying curve. As a result of numerical analyses of the debris flow simulation, more debris flow occurred in the wetting curve than in the drying curve. It was also found that the landslide analysis with the drying curve tends to overestimate the actual safety factor with the in situ wetting curve. Finally, it is confirmed that calculating the matric suction through SWCC considering the volume change is more appropriate and reasonable for the field landslide analysis.

Comparisons in Volumes of Irrigation and Drainage, Plant Growth and Fruit Yield under FDR Sensor-, Integrated Solar Radiation-, and Timer-Automated Irrigation Systems for Production of Tomato in a Coir Substrate Hydroponic System (토마토 코이어 수경재배에서 FDR센서, 적산일사량센서 및 타이머 급액방식에 따른 급배액량, 생육 및 과실수량 비교)

  • Choi, Eun-Young;Kim, Hee-Yong;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • Water drainage from the open hydroponics often causes significant environmental pollution due to agrochemicals and loss of water and nutrients. The objectives of this study were to show the potential application of an irrigation schedule based on threshold values of volumetric substrate water content for tomato (Solanum lycopersicum L. 'Samsamgu') cultivation in a commercial hydroponic farm during spring to summer cultivation. This study was performed for minimizing effluent from coir substrate hydroponics using a frequency domain reflectometry (FDR) sensor-automated irrigation, as compared with an integrated solar-radiation (IR) and conventional timer-irrigation (TIMER) after transplanting. In results, no significant difference in daily irrigation volume was found among the treatments until 88 days after transplant (DAT). However, during the 88 to 107 DAT, the daily irrigation volume was in the order of IR (2125 mL) > TIMER (2063 mL) > FDR (1983 mL), and during the 108 to 120 DAT, it was in the order of IR (2000 mL) > TIMER (1664 mL) > FDR (1500 mL). The lowest drainage volume was observed in the FDR treatment with the order of IR (12~19%) > TIMER (4~12%) > FDR (0~7%) during the entire growing period. A lower irrigation volume in the FDR treatment after 88 DAT may be due to the sensor's detecting capacity for less water absorption by plant after completing fruit maturity with apical pruning and removal of lower leaves, while a higher irrigation volume in the IR treatment may be due to gradual increase in integrated solar-radiation amount as closer to summer season. There was no significant difference in plant growth and fruit yield among the treatments; however, a 11% and 18% of higher soluble sugar content was observed in the FDR than that of TIMER and IR treatment. respectively.

Temperature Sensitivity Analysis of TDR Moisture Content Sensor for Road Pavement (도로하부 함수비 계측을 위한 TDR 방식 함수비 센서 온도 민감도 분석)

  • Cho, Myunghwan;Lee, Yoonhan;Kim, Nakseok;Jee, Keehwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.329-336
    • /
    • 2013
  • The infrastructure of flexible pavement is composed of aggregate subbase, anti-frost layer, and subgrade. In particular, the subgrade performance is affected by climates such as frost action and precipitation. The method of TDR(Time Domain Reflectometry) sensors to measure moisture contents in subgrade layer has been used in the research. Due to the TDR method using dielectric permitivity of soil and water, the sensors can be affected by the low subgrade temperatures. The air temperatures frequently drops below $-20^{\circ}C$ in the winter in Korea. As a result, it is necessary to estimate the accuracy of the TDR moisture sensors in the range of below zero temperatures. In this study, the subgrade temperatures of lower than $-2^{\circ}C$ were extended to evaluate temperature sensitivity of the TDR moisture sensors. The test results revealed that the moisture contents around the sensors were reduced while those of the upper part of specimen showed a tendency to increase as the specimen surface temperature drops below zero under the volumetric moisture contents(VMC) of 20% and 30%. However, the impact of temperature on the function of the sensor at lower water contents was found to be negligible if any.

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics (토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명)

  • Han, Dongsup;Baek, Jeonghyeon;Park, Juseong;Shin, Wonkyo;Cho, Ilhwan;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.366-375
    • /
    • 2019
  • This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.