DOI QR코드

DOI QR Code

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics

토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명

  • Han, Dongsup (Department of Agricultural Science, Korea National Open University) ;
  • Baek, Jeonghyeon (Department of Agricultural Science, Korea National Open University) ;
  • Park, Juseong (Department of Electronics Engineering, Pusan National University) ;
  • Shin, Wonkyo (Chungnam Agriculture Meister College, Chungnam National University) ;
  • Cho, Ilhwan (Telofarm Inc.) ;
  • Choi, Eunyoung (Department of Agricultural Science, Korea National Open University)
  • 한동섭 (한국방송통신대학교 농학과) ;
  • 백정현 (한국방송통신대학교 농학과) ;
  • 박주성 (부산대학교 전자공학과) ;
  • 신원교 (남농업마이스터대학) ;
  • 조일환 ((주)텔로팜) ;
  • 최은영 (한국방송통신대학교 농학과)
  • Received : 2019.08.22
  • Accepted : 2019.10.02
  • Published : 2019.10.30

Abstract

This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.

본 실험은 토마토(Solanum lycopersicum L. 'Hoyong' 'Super Doterang') 암면재배에서 배지 전체의 정전용량을 측정할 수 있는 장치(Substrate capacitance measurement device, SCMD)를 기반으로 한 적정 급액 방법을 구명하기 위하여 누적일사량 제어구(Integrated solar radiation automated irrigation, ISR)와 물관수액흐름 제어구(sap flow automated irrigation, SF)를 대조구로 비교하면서 봄부터 여름철과 겨울철에 재배를 실시하였다. SCMD 제어구는 급액 개시 후 배지 한 개당 설정된 배액 목표량이 처음 발생하는 시점까지 10분간격으로 급액하였고 첫 배액이 배출되면 그 때의 배지의 정전용량(Capacitance)을 100%로 간주하고 그 기준치의 급액제어점(Capacitance threshold, CT)에 도달하면 급액 되었고 그 뒤 목표 배액량이 발생하면 급액이 멈추는 방식으로 제어되었다. 봄부터 여름재배에서 실험 처리를 위해 SCMD제어구의 일회 급액량 (Irrigation volume per event)을 50, 75, 또는 100mL로 설정하였고 겨울철 재배에서는 CT가 0.65, 0.75, 또는 0.90가 되면 급액 되도록 설정하였다. 봄부터 여름철 재배에서 일회 급액량을 50, 75, 100mL로 설정하였을 때 급액 횟수는 각각 39, 29, 19회였고 배액율은 각각 3.04, 9.25, 20.18%였다. 겨울철 재배에서 CT를 0.65, 0.75, 0.90로 설정하였을 때 급액횟수는 각각 5.67, 6.50, 14.67회였고 배액율은 9.91, 10.78, 35.3%였다. 봄부터 여름철 재배에서 일회 급액량 처리에 따른 물관수액흐름속도(SF) 변화는 1회 급액량과 배액량을 각각 50과 75mL로 제한한 경우 100mL로 제한한 경우와 비교하여SF 신호가 외부 광량 신호 (SI) 보다 늦어지는 경향(time lag)을 보였고 겨울철 재배에서 CT를 0.65로 설정한 경우는 물관수액흐름 속도나 함수율이 매우 낮아졌고 CT를 0.90로 설정한 경우는 함수율과 물관수액흐름 속도는 매우 높았으나 많은 배액이 배출되었다. 따라서 토마토 봄부터 여름철 재배에서 SCMD를 활용하여 CT를 0.9로, 배지 한 개당 배액 목표량을 100mL로 설정하였을 때 일회 급액량은 75~100mL 범위가 적합하고 겨울철 재배에서는 1회 급액량을 75mL로, 배액 목표량을 70mL로 설정하였을 때 CT는 0.75이상 0.9이하 범위가 적합할 것으로 판단되었다. 앞으로 정전용량 값과 배지 용적수분함량의 관계성을 구명하고 보정계수를 구하는 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Baek, S., E. Jeon, K.S. Park, K.H. Yeo and J. Lee. 2018. Monitoring of water transportation in plant stem with microneedle sap flow sensor. JMEMS. 27: 440-447.
  2. Banavar, J.R., and D.L. Johnson. 1987. Characteristic pore sizes and transport in porous media. Physical Review B. 35:7283-7286. https://doi.org/10.1103/PhysRevB.35.7283
  3. Bo, X., T. Du, R. Ding, and L. Comas. 2017. Time lag characteristics of sap flow in seed-maize and their implications for modeling transpiration in an arid region of Northwest China. J. Arid Land. 9:515-529. https://doi.org/10.1007/s40333-017-0024-4
  4. Burnett, S.E., and M.W. van Iersel. 2008. Morphology and irrigation efficiency of Gaura lindheimeri growth with capacitance sensor controlled irrigation. HortScie. 43:1555-1560. https://doi.org/10.21273/HORTSCI.43.5.1555
  5. Bergman, D.J., and D. Stroud. 1992. Physical Properties of Macroscopically Inhomogeneous Media. Solid State Physics 46: 147-269. https://doi.org/10.1016/S0081-1947(08)60398-7
  6. Bhagat, V.K., S. Biswas, and J. Dehury. 2014. Physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. Polym. Composite. 35:925-930. https://doi.org/10.1002/pc.22736
  7. Biswas, S., Q. Ahsan, A. Cenna, M. Hasan, and A. Hassan. 2013. Physical and mechanical properties of jute, bamboo and coir natural fiber. Fiber and Polym. 14:1762-1767. https://doi.org/10.1007/s12221-013-1762-3
  8. Cardenas-Lailhacar, B., M.D. Dukes, and G.L. Miller. 2010. Sensor-based automation of irrigation on Bermuda grass during wet weather conditions. J Irr Drain Eng. 134:120-128. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:2(120)
  9. Choi, E.Y., K.Y. Choi, and Y.B. Lee. 2013a. Non-drainage irrigation scheduling in coir substrate hydroponic system for tomato cultivation by a frequency domain reflectometry sensor. Europ. J. Hortic. Sci. 78:132-143.
  10. Choi, E.Y., Y.H. Woo, M. Son, K.Y. Choi, and Y.B. Lee. 2013b. Nutrient solution concentration effects on non-drainage irrigation scheduling in coir substrate hydroponic system for tomato cultivation by a FDR sensor. Intl. J. Food Agr. Environ. 11:636-641.
  11. Choi, E.Y., S.K. Seo, K.Y. Choi, and Y.B. Lee. 2014. Development of a non-drainage hydroponic system with a coconut coir substrate by a frequency domain reflectometry sensor for tomato cultivation. J. Plant Nutr. 37:748-764. https://doi.org/10.1080/01904167.2013.868479
  12. Choi, E.Y., Y.H. Yoon, K.Y. Choi, and Y.B. Lee. 2015. Environmentally sustainable production of tomato in coir substrate hydroponic system using a frequency domain reflectometry sensor. Hort. Environ. Biotechnol. 56:167-177. https://doi.org/10.1007/s13580-015-0036-y
  13. De Swaef, T., K. Verbist, and W. Cornelis. 2012. Tomato sap flow, stem and fruit growth in relation to water availability in rockwool growing medium. Plant Soil 350:237-252. https://doi.org/10.1007/s11104-011-0898-4
  14. Farina, E., F.D. Battista, and M. Palagi. 2007. Automation of irrigation in hydroponics by FDR sensors-Experimental results from field trials. Acta Hortic. 747:193-196. https://doi.org/10.17660/actahortic.2007.747.21
  15. Gonzalez-Altozano, P., E.W Pavel, J.A Oncins, J Doltra, M Cohen, T Pa o, R Massai, and J.R Castel. 2008. Comparative assessment of five methods of determining sap flow in peach trees. Agr. Water Manage. 95: 503-515. https://doi.org/10.1016/j.agwat.2007.11.008
  16. Heuvelink, E., M.J. Bakker, L.F.M. Marcelis, and M. Raaphorst 2008. Climate and yield in a closed greenhouse. Acta Hortic. 801:1083-1092. https://doi.org/10.17660/actahortic.2008.801.130
  17. Hunt, D.S. and J. McDonald. 2015. Automating irrigation scheduling in production nurseries using a weight-based irrigation controller. Acta hortic. 1104:49-56. https://doi.org/10.17660/actahortic.2015.1104.8
  18. Jaria, F. and C.A. Madramootoo. 2013. Thresholds for irrigation management of processing tomatoes using soil moisture sensors in Southwestern Ontario. Trans. ASAE. 56:155-166. https://doi.org/10.13031/2013.42597
  19. Kim, S.E., Y.S. Kim, and S.Y. Sim. 2011. Design of measuring trays in the irrigation system using drainage electrodes for tomato perlite bed culture. Kor. J. Hort. Sci. Technol. 29:568-574 (in Korean).
  20. Lizarraga, A., H. Boesveld, F. Huibers, and C. Robles. 2003. Evaluating irrigation scheduling of hydroponic tomato in Navarra, Spain. Irrig. Drain. 52:177-188. https://doi.org/10.1002/ird.86
  21. Park, J.S., S.M. Kim, Y.J. Park and Telofarm Inc. 2019. System for measuring water content of medium for water culture. Korea Patent Application No. 10-2019-0031856 (in Korean).
  22. Park, S.T., G.H. Jung, K.Y. Choi, Y.B. Lee, J.S. Oh, and H.J. Yoo. 2011a. Changes of measuring water content values on FDR sensors at different distances. Kor, J, Hortic. Sci. Technol. 29(2):187 (in Korean).
  23. Park, S.T., G.H. Jung, K.Y. Choi, Y.B. Lee, J.S. Oh, and H.J. Yoo. 2011b. Changes of water content according to measuring locations of FDR sensors on content coir substrate for hydroponics. Kor. J. Hortic. Sci. Technol. 29:187-188 (in Korean).
  24. Park, S.T., G.H. Jung, H.J. Yoo, E.Y. Choi, K.Y.Choi, and Y.B. Lee. 2014. Measuring water content characteristics by using frequency domain feflectometry sensor in coconut coir substrate. Protected Hort. Plant Fac. 23:158-166 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.2.158
  25. Ta, T.H., J.H. Shin, T.I. Ahn, and J.E. Son. 2011. Modeling of transpiration of paprika (Capsicum annuum L.) plants based on radiation and leaf area index in soilless culture. Horti. Environ. Biotechnol.52:265-269. https://doi.org/10.1007/s13580-011-0216-3
  26. Vermeulen, K., K. Steppe, K. Janssen, P. Bleyaert, J. Dekock, J.M. Aerts, D. Berckmans, and R. Lemeur. 2007. Solutions to overcome pitfalls of two automated systems for direct measurement of greenhouse tomato water uptake. Hort-Tech. 17: 220-226.
  27. Yeager, T.R., C.J. Gilliam, T.E. Bilderback, D.C. Fare, A.X. Niemiera, and K.M. Tilt. 1997. Best management practice: guide for producing container-grown plants. Southern Nursery Assoc., Marietta, GA.