• Title/Summary/Keyword: volume-surface ratios

Search Result 96, Processing Time 0.023 seconds

Change in nostril ratio after cleft rhinoplasty: correction of nostril stenosis with full-thickness skin graft

  • Suh, Joong Min;Uhm, Ki Il
    • Archives of Craniofacial Surgery
    • /
    • v.22 no.2
    • /
    • pp.85-92
    • /
    • 2021
  • Background: Patients with secondary deformities associated with unilateral cleft lip and nose might also suffer from nostril stenosis due to a lack of tissue volume in the nostril on the cleft side. Here, we used full-thickness skin grafts (FTSGs) to reduce nostril stenosis and various methods for skin volume augmentation. We compared the changes in the symmetry of both nostrils before and after surgery. Methods: From February 2016 to January 2020, 34 patients underwent secondary cheiloplasty and open rhinoplasty for secondary deformities of the unilateral cleft lip and nose with nostril stenosis. FTSG was used on the nostril floor, nasal columella, and alar inner lining. The measured nasal profile included the nostril surface, nostril circumference, width of the nostril floor, and distance from the alar-facial groove to the nasal tip. The "overlap area," which was defined as the largest overlapping area when the image of the cleft nostril was flipped to the left and right and overlaid on the image of the normal side nostril, was also calculated. The degree of symmetry was evaluated by dividing the value of the cleft side by that of the normal side of each measured profile and expressed as "ratios." Results: The results of all profile ratios, except for the nostril floor width, became significantly close to 1, which represents full symmetry. The overlap area ratio improved from 62.7% to 77.3%, meaning that the length and width of the nostril as well as the overall shape became similar (p< 0.05). Conclusion: When performing cleft rhinoplasty with nostril stenosis, FTSG is useful to achieve symmetry in the nostril size and shape. Skin grafting is simpler to perform than the other types of local flap, and the results are generally satisfactory.

Micro-computed tomographic evaluation of single-cone obturation with three sealers

  • Sahar Zare;Ivy Shen;Qiang Zhu;Chul Ahn;Carolyn Primus;Takashi Komabayashi
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.25.1-25.12
    • /
    • 2021
  • Objectives: This study used micro-computed tomography (µCT) to compare voids and interfaces in single-cone obturation among AH Plus, EndoSequence BC, and prototype surface pre-reacted glass ionomer (S-PRG) sealers and to determine the percentage of sealer contact at the dentin and gutta-percha (GP) interfaces. Materials and Methods: Fifteen single-rooted human teeth were shaped using ProTaper NEXT size X5 rotary files using 2.5% NaOCl irrigation. Roots were obturated with a single-cone ProTaper NEXT GP point X5 with AH Plus, EndoSequence BC, or prototype S-PRG sealer (n = 5/group). Results: The volumes of GP, sealer, and voids were measured in the region of 0-2, 2-4, 4-6, and 6-8 mm from the apex, using image analysis of sagittal µCT scans. GP volume percentages were: AH Plus (75.5%), EndoSequence BC (87.3%), and prototype S-PRG (94.4%). Sealer volume percentages were less: AH Plus (14.3%), EndoSequence BC (6.8%), and prototype S-PRG (4.6%). Void percentages were AH Plus (10.1%), EndoSequence BC (5.9%), and prototype S-PRG (1.0%). Dentin-sealer contact ratios of AH Plus, EndoSequence BC, and prototype S-PRG groups were 82.4% ± 6.8%, 71.6% ± 25.3%, and 70.2% ± 9.4%, respectively. GP-sealer contact ratios of AH Plus, EndoSequence BC, and prototype S-PRG groups were 65.6% ± 29.1%, 80.7% ± 25.8%, and 87.0% ± 8.6%, respectively. Conclusions: Prototype S-PRG sealer created a low-void obturation, similar to EndoSequence BC sealer with similar dentin-sealer contact (> 70%) and GP-sealer contact (> 80%). Prototype S-PRG sealer presented comparable filling quality to EndoSequence BC sealer.

Influence of Nitrogen moieties on CO2 capture of Carbon Aerogel

  • Jeon, Da-Hee;Min, Byung-Gak;Oh, Jong Gab;Nah, Changwoon;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.57-61
    • /
    • 2015
  • Carbon aerogel is a porous carbon material possessing high porosity and high specific surface area. Nitrogen doping reduced the specific surface area and micropores, but it furnished basic sites to improve the $CO_2$ selectivity. In this work, N-doped carbon aerogels were prepared with different ratios of resorcinol/melamine by using the sol-gel method. The morphological properties were characterized by scanning electron microscopy (SEM). Nitrogen content was studied by X-ray photoelectron spectroscopy (XPS) and the specific surface area and micropore volume were analyzed by $N_2$ adsorption-desorption isotherms at 77 K. The $CO_2$ adsorption capacity was investigated by $CO_2$ adsorption-desorption isotherms at 298 K and 1 bar. Melamine containing N-doped CAs showed a high nitrogen content (5.54 wt.%). The prepared N-doped CAs exhibited a high $CO_2$ capture capacity of 118.77 mg/g (at resorcinol/melamine = 1:0.3). Therefore, we confirmed that the $CO_2$ adsorption capacity was strongly affected by the nitrogen moieties.

Effects of organic silicone additive material on physical and mechanical properties of mudstone

  • Chai, Zhaoyun;Kang, Tianhe;Chen, Weiyi
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.139-151
    • /
    • 2014
  • Mudstone is a very common rock that, when in contact with water, can exhibit considerable volume change and breakdown. This behavior of mudstone is frequently encountered in geotechnical engineering and has a considerable influence on infrastructure stability. This is particularly important in the present work, which focuses on mitigating the harmful properties of mudstone. The samples studied are of Permian Age mudstone from Shandong Province, China. Modification tests using organic silicone additive material were carried out. The mechanisms of physical properties modification of mudstone were comparatively studied using corresponding test methods, and the modification mechanism of organic silicone additive material acting on mudstone was analyzed. The following conclusions were drawn. The surface texture and characters of mudstone changed dramatically, surface character turns from hydrophilic to hydrophobic after organic silicone additive material modification. The changes in the surface character indicate a reduction in the water sensitivity of mudstone. After modification, the shape of porosity and fracture of mudstone changed unremarkable, and the total and free expansion ratios decreased obviously, whereas the strength increased markedly.

Synthesis and Characterization of Zinc Oxide Nanorods for Nitrogen Dioxide Gas Detection

  • Park, Jong-Hyun;Kim, Hyojin
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.260-266
    • /
    • 2021
  • Synthesizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate highly efficient gas sensors by means of possible enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned zinc oxide (ZnO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the ZnO nanorods array of the single hexagonal wurtzite crystalline phase. From gas sensing measurements for the nitrogen dioxide (NO2) gas, the vertically aligned ZnO nanorod array is observed to have a highly responsive sensitivity to NO2 gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO2 at 250 ℃ and a low NO2 detection limit of 5 ppm in dry air. These results along with a facile fabrication process demonstrate that the ZnO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO2 gas sensors.

Vertically aligned cupric oxide nanorods for nitrogen monoxide gas detection

  • Jong-Hyun Park;Hyojin Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.219-226
    • /
    • 2023
  • Utilizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate relevant gas sensors by means of potential enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned cupric oxide (CuO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a CuO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Cu metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the CuO nanorods array of the single monoclinic tenorite crystalline phase. From gas sensing measurements for the nitrogen monoxide (NO) gas, the vertically aligned CuO nanorod array is observed to have a highly responsive sensitivity to NO gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO at 200 ℃ and a low NO detection limit of 2 ppm in dry air. These results along with a facile fabrication process demonstrate that the CuO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO gas sensors.

Frequency analysis of liquid sloshing in prolate spheroidal containers and comparison with aerospace spherical and cylindrical tanks

  • Mohammad Mahdi Mohammadi;Hojat Taei;Hamid Moosazadeh;Mohammad Sadeghi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.439-455
    • /
    • 2023
  • Free surface fluid oscillation in prolate spheroidal tanks has been investigated analytically in this study. This paper aims is to investigate the sloshing frequencies in spheroidal prolate tanks and compare them with conventional cylindrical and spherical containers to select the best tank geometry for use in space launch vehicles in which the volume of fuel is very high. Based on this, the analytical method (Fourier series expansion) and potential fluid theory in the spheroidal coordinate system are used to extract and analyze the governing differential equations of motion. Then, according to different aspect ratios and other parameters such as filling levels, the fluid sloshing frequencies in the spheroidal prolate tank are determined and evaluated based on various parameters. The natural frequencies obtained for a particular tank are compared with other literature and show a good agreement with these results. In addition, spheroidal prolate tank frequencies have been compared with sloshing frequencies in cylindrical and spherical containers in different modes. Results show that when the prolate spheroidal tank is nearly full and in the worst case when the tank is half full and the free fluid surface is the highest, the prolate spheroidal natural frequencies are higher than of spherical and cylindrical tanks. Therefore, the use of spheroidal tanks in heavy space launch vehicles, in addition to the optimal use of placement space, significantly reduces the destructive effects of sloshing.

Optimization of Ingredient Mixing Ratio for Preparation of Steamed Foam Cake with Added Saltwort (Salicornia herbacea L.) (함초 첨가 거품형 찜케이크의 재료 혼합비율의 최적화)

  • Kim, Yu-Suk;Kwak, Sung-Ho;Jang, Myung-Sook
    • Korean journal of food and cookery science
    • /
    • v.22 no.5 s.95
    • /
    • pp.666-680
    • /
    • 2006
  • To obtain basic data for the utilization of saltwort (Salicornia herbacea L.) as a functional ingredient in steamed foam cake, the optimum component ratios for major raw ingredients (saltwort, salt, and wheat flour) as independent variables that affect the product quality were scientifically determined using RSM (response surface methodology) technique. A three-factor and five-level rotational central composite design was used for treatment arrangement. The complete design consisted of 16 experimental points. The three independent variables selected for the RSM experiment were amounts of saltwort (X$_1$, 5${\sim}$25 g), salt (X$_2$, 0${\sim}$10 g), and wheat flour (X$_3$, 470${\sim}$530 g). The optimum responses in specific gravity of the batter and volume, color, texture, and sensory evaluation result of the cake were obtained. The specific gravity and viscosity of the batter at p<0.01 was verified from the regression curve. The characteristic of the batter was influenced by all independent variables, but was extremely dependent on the amount of saltwort ordinary points of the surface responses from the batter formed the minimum points for specific gravities of the batter while viscosities of the batter appeared with the saddle points. Analysis of the response indicated that the amount of saltwort was the most influential factor over the physical properties of the cake, among the dependent variables. Ordinary points of the surface responses from the cake formed the maximum points for loaf volume, hardness gumminess, and chewiness, while Hunter colorimetric parameters appeared with the saddle points. The result indicated that level of the saltwort deviating more or less from the optimal amount decreased the volume and increased the specific gravity with less tender product. Ordinary points of the surface responses of the sensory evaluation scores from the cake formed the maximum points for appearance, flavor, softness, and overall acceptability, while color values appeared with the saddle points. The result also indicated that the level of the saltwort deviating more or less from the optimal amount reduced the preference for the product. Integration of the optimum responses common to all dependent variables that overlapped all the contour maps finally indicated that the combination of 8.3${\sim}$13.8 g saltwort, 2.5${\sim}$6.6 g salt, and 486.5${\sim}$511.5 g wheat flour under the selected preparation recipe optimized the physical and sensory properties in the teamed foam cakes. Practical preparation of the product with median amounts of the ingredients, i.e., 11.0 g saltwort, 4.6 g salt, and 499.0 g wheat flour resulted in similar qualities to the predicted responses. In conclusion, these study results indicated that preparation of steamed foam cake with added saltwort ingredient could potentially produce a more nutritious product with less salt. Further research is required to acquire the optimum levels for sub-ingredients to improve the product quality.

Seismic Traveltime Tomography in Inhomogeneous Anisotropic Media (불균질 이방성 매질에서의 탄성파 주시 토모그래피)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.209-214
    • /
    • 2007
  • In Korean geology that crystalline rock is dominant, the properties of subsurface including the anisotropy are distributed complexly and changed abruptly. Because of such geological environments, cross-hole seismic traveltime tomography is widely used to obtain the high resolution image of the subsurface for the engineering purposes in the geotechnical sites. However, because the cross-hole tomography has a wide propagation angle coverage relatively, its data tend to include the seismic velocity anisotropy comparing with the surface seismic methods. It can cause the misinterpretation that the cross-hole seismic data including the anisotropic effects are analyzed and treated with the general processing techniques assuming the isotropy. Therefore, we need to consider the seismic anisotropy in cross-hole seismic traveltime tomography. The seismic anisotropic tomography algorithm, which is developed for evaluation of the velocity anisotropy, includes several inversion schemes in order to make the inversion process stable and robust. First of all, the set of the inversion parameters is limited to one slowness, two ratios of slowness and one direction of the anisotropy symmetric axis. The ranges of the inversion parameters are localized by the pseudo-beta transform to obtain the reasonable inversion results and the inversion constraints are controlled efficiently by ACB(Active Constraint Balancing) method. Especially, the inversion using the Fresnel volume is applied to the anisotropic tomography and it can make the anisotropic tomography more stable than ray tomography as it widens the propagation angle coverage.

  • PDF

A Study on the Dimensions, Surface Area and Volume of Grains (곡립(穀粒)의 치수, 표면적(表面積) 및 체적(體積)에 관(關)한 연구(硏究))

  • Park, Jong Min;Kim, Man Soo
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.1
    • /
    • pp.84-101
    • /
    • 1989
  • An accurate measurement of size, surface area and volume of agricultural products is essential in many engineering operations such as handling and sorting, and in heat transfer studies on heating and cooling processes. Little information is available on these properties due to their irregular shape, and moreover very little information on the rough rice, soybean, barley, and wheat has been published. Physical dimensions of grain, such as length, width, thickness, surface area, and volume vary according to the variety, environmental conditions, temperature, and moisture content. Especially, recent research has emphasized on the variation of these properties with the important factors such as moisture content. The objectives of this study were to determine physical dimensions such as length, width and thickness, surface area and volume of the rough rice, soybean, barley, and wheat as a function of moisture content, to investigate the effect of moisture content on the properties, and to develop exponential equations to predict the surface area and the volume of the grains as a function of physical dimensions. The varieties of the rough rice used in this study were Akibare, Milyang 15, Seomjin, Samkang, Chilseong, and Yongmun, as a soybean sample Jangyeobkong and Hwangkeumkong, as a barley sample Olbori and Salbori, and as a wheat sample Eunpa and Guru were selected, respectively. The physical properties of the grain samples were determined at four levels of moisture content and ten or fifteen replications were run at each moisture content level and each variety. The results of this study are summarized as follows; 1. In comparison of the surface area and the volume of the 0.0375m diameter-sphere measured in this study with the calculated values by the formula the percent error between them showed least values of 0.65% and 0.77% at the rotational degree interval of 15 degree respectively. 2. The statistical test(t-test) results of the physical properties between the types of rough rice, and between the varieties of soybean and wheat indicated that there were significant difference at the 5% level between them. 3. The physical dimensions varied linearly with the moisture content, and the ratios of length to thickness (L/T) and of width to thickness (W/T) in rough rice decreased with increase of moisture content, while increased in soybean, but uniform tendency of the ratios in barley and wheat was not shown. In all of the sample grains except Olbori, sphericity decreased with increase of moisture content. 4. Over the experimental moisture levels, the surface area and the volume were in the ranges of about $45{\sim}51{\times}10^{-6}m^2$, $25{\sim}30{\times}10^{-9}m^3$ for Japonica-type rough rice, about $42{\sim}47{\times}10^{-6}m^2$, $21{\sim}26{\times}10^{-9}m^3$ for Indica${\times}$Japonica type rough rice, about $188{\sim}200{\times}10^{-6}m^2$, $277{\sim}300{\times}10^{-9}m^3$ for Jangyeobkong, about $180{\sim}201{\times}10^{-6}m^2$, $190{\sim}253{\times}10^{-9}m^3$ for Hwangkeumkong, about $60{\sim}69{\times}10^{-6}m^2$, $36{\sim}45{\times}10^{-9}m^3$ for Covered barley, about $47{\sim}60{\times}10^{-6}m^2$, $22{\sim}28{\times}10^{-9}m^3$ for Naked barley, about $51{\sim}20{\times}10^{-6}m^2$, $23{\sim}31{\times}10^{-9}m^3$ for Eunpamill, and about $57{\sim}69{\times}10^{-6}m^2$, $27{\sim}34{\times}10^{-9}m^3$ for Gurumill, respectively. 5. The increasing rate of surface area and volume with increase of moisture content was higher in soybean than other sample grains, and that of Japonica-type was slightly higher than Indica${\times}$Japonica type in rough rice. 6. The regression equations of physical dimensions, surface area and volume were developed as a function of moisture content, the exponential equations of surface area and volume were also developed as a function of physical dimensions, and the regression equations of surface area were also developed as a function of volume in all grain samples.

  • PDF