Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.1.057

Influence of Nitrogen moieties on CO2 capture of Carbon Aerogel  

Jeon, Da-Hee (Department of Chemistry, Inha University)
Min, Byung-Gak (Department of Polymer Science & Engineering, Korea National University of Transportation)
Oh, Jong Gab (Department of Design Manufacturing, Graduate School, Chonbuk National University)
Nah, Changwoon (Department of Design Manufacturing, Graduate School, Chonbuk National University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.16, no.1, 2015 , pp. 57-61 More about this Journal
Abstract
Carbon aerogel is a porous carbon material possessing high porosity and high specific surface area. Nitrogen doping reduced the specific surface area and micropores, but it furnished basic sites to improve the $CO_2$ selectivity. In this work, N-doped carbon aerogels were prepared with different ratios of resorcinol/melamine by using the sol-gel method. The morphological properties were characterized by scanning electron microscopy (SEM). Nitrogen content was studied by X-ray photoelectron spectroscopy (XPS) and the specific surface area and micropore volume were analyzed by $N_2$ adsorption-desorption isotherms at 77 K. The $CO_2$ adsorption capacity was investigated by $CO_2$ adsorption-desorption isotherms at 298 K and 1 bar. Melamine containing N-doped CAs showed a high nitrogen content (5.54 wt.%). The prepared N-doped CAs exhibited a high $CO_2$ capture capacity of 118.77 mg/g (at resorcinol/melamine = 1:0.3). Therefore, we confirmed that the $CO_2$ adsorption capacity was strongly affected by the nitrogen moieties.
Keywords
carbon aerogel; $CO_2$ capture; $CO_2$ adsorption; N-doping; N-doped carbon aerogel;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Keith DW. Why Capture $CO_2$ from the Atmosphere? Science, 325, 1654 (2009). http://dx.doi.org/10.1126/science.1175680.   DOI
2 Haszeldine RS. Carbon Capture and Storage: How Green Can Black Be? Science, 325, 164 (2009). http://dx.doi.org/10.1126/science.1172246.
3 Lee KM, Lim YH, Park CJ, Jo YM. Adsorption of Low-Level $CO_2$ Using Modified Zeolites and Activated Carbon. Ind Eng Chem Res, 51, 1355 (2012). http://dx.doi.org/10.1021/ie2013532.   DOI   ScienceOn
4 IEA, "Prospects for $CO_2$ capture and storage." Energy technology analysis, 27 (2004). Paris.
5 Meng LY, Park SJ. Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates. J Colloid Interface Sci, 366, 125 (2012). http://dx.doi.org/10.1016/j.jcis.2012.07.025.   DOI
6 D'Alessandro DM, Smit B, Long JR. Carbon Dioxide Capture: Prospects for New Materials. Angew Chem Int Ed, 49, 6058 (2010). http://dx.doi.org/10.1002/anie.201000431.   DOI
7 Rao AB, Rubin ES. A technical, economic, and environmental assessment of amine-based $CO_2$ capture technology for power plant greenhouse gas control. Environ Sci Technol, 36, 4467 (2002). http://dx.doi.org/10.1021/es0158861.   DOI
8 Hughes RW, Lu DY, Anthony EJ, Macchi A. Design, process simulation and construction of an atmospheric dual fluidized bed combustion system for in situ CO(2) capture using high-temperature sorbents. Fuel Processing Technol, 86, 1523 (2005). http://dx.doi.org/10.1016/j.furpoc.2005.01.006.   DOI
9 Li PY, Zhang SJ, Chen SX, Zhang QK, Pan JJ, Ge BQ. Preparation and adsorption properties of polythylenimine containing fibrous adsorbent for carbon dioxide capture. J Appl Polym Sci, 108, 3851 (2008). http://dx.doi.org/10.1002/app.27937.   DOI
10 Hutson ND, Speakman SA, Payzant EA. Structural effects on the high temperature adsorption of $CO_2$ on a synthetic hydrotalcite. Chem Mater, 16, 4135 (2004). http://dx.doi.org/10.1021/cm040060u.   DOI
11 Sevilla M, Fuertes AB. Sustainable porous carbons with a superior performance for $CO_2$ capture. Energy Environ Sci, 4, 1765 (2011). http://dx.doi.org/10.1039/c0ee00784f.   DOI
12 Lee SY, Park SJ. Determination of the optimal pore size for improved $CO_2$ adsorption in activated carbon fibers. J Colloid Interface Sci, 389, 230 (2013). http://dx.doi.org/10.1016/j.jcis.2012.09.018.   DOI   ScienceOn
13 Belmabkhout Y, Sayari A. Isothermal versus non-isothermal adsorption-desorption cycling of triamine-grafted pore-expanded MCM-41 mesoporous silica for $CO_2$ capture from flue gas. Energy Fuels, 24, 5273 (2010). http://dx.doi.org/10.1021/ef100679e.   DOI
14 Meng LY, Park SJ. Effect of heat treatment on $CO_2$ adsorption of KOH-activated graphite nanofibers. J Colloid Interface Sci, 352, 498 (2010). http://dx.doi.org/10.1016/j.jcis.2010.08.048.   DOI
15 Aruldoss D, Saigoanker R, Das Savarimuthu J, Jagannathan R. Amine-grafted zeolites-mesoporous ceramics: synthesis and adsorption characteristics. Ceram Int, 40, 7583 (2014). http://dx.doi.org/10.1016/j.ceramint.2013.11.111.   DOI
16 Meng LY, Park SJ. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications. Carbon let, 15, 89 (2014). http://dx.doi.org/10.5714/CL.2014.15.2.089.   DOI
17 Thang HV, Grajciar L, Nachtigall P, Bludsky O, Arean CO, Frydova E, Bulanek R. Adsorption of $CO_2$ in FAU zeolites: effect of zeolite composition. Catal Today, 227, 50 (2014). http://dx.doi.org/10.1016/j.cattod.2013.10.036.   DOI
18 Meng LY, Park SJ. Effect of nano-silica spheres template on $CO_2$ capture of exchange resin-based nanoporous carbons. J Nanosci Nanotechnol, 13, 401 (2013). http://dx.doi.org/10.1166/jnn.2013.6931.   DOI
19 Zuluaga S, Canepa P, Tan K, Chabal YJ, Thonhauser T. Study of van der Waals bonding and interactions in metal organic framework materials. J Phys Condens Matter, 26, 133002 (2014). http://dx.doi.org/10.1088/0953-8984/26/13/133002.   DOI
20 Adhikari AK, Lin KS. Synthesis, fine structural characterization, and $CO_2$ adsorption capacity of metal organic frameworks-74. J Nanosci Nanotechnol, 14, 2709 (2014). http://dx.doi.org/10.1166/jnn.2014.8621.   DOI
21 Seo MK, Lee YS, Park SJ, Surface characteristics of fluorinemodified PAN-based carbon fibers. Carbon, 41, 723 (2003). http://dx.doi.org/10.1016/S0008-6223(02)00384-6.   DOI
22 Kim KS, Park SJ. Easy synthesis of polyaniline-based mesoporous carbons and their high electrochemical performance. Microporous Mesoporous Mater, 163, 140 (2012). http://dx.doi.org/10.1016/j.micromeso.2012.04.047.   DOI   ScienceOn
23 Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). http://dx.doi.org/10.1016/S0021-9797(02)00081-4.   DOI
24 Yoo HM, Lee SY, Park SJ, Ordered nanoporous carbon for increasing $CO_2$ capture. J Solid State Chem, 197, 361 (2013). http://dx.doi.org/10.1016/j.jssc.2012.08.035.   DOI
25 Kim BJ, Lee SY, Park SJ. Effect of surface modification of mesoporous carbon supports on the electrochemical activity of fuel cells. J Colloid Interface Sci, 405, 150 (2013). http://dx.doi.org/10.1016/j.jcis.2013.04.009.   DOI
26 Moon CW, Kim YJ, Im SS, Park SJ. Effect of activation temperature on $CO_2$ capture behaviors of resorcinol-based carbon aerogels. Bull Korean Chem Soc, 35, 57 (2014). http://dx.doi.org/10.5012/bkcs.2014.35.1.57.   과학기술학회마을   DOI
27 Ghaedi M, Nasab AG, Khodadoust S, Rajabi M, Azizian S. Application of activated carbon as adsorbents for efficient removal of methylene blue: kinetics and equilibrium study. J Ind Eng Chem, 20, 2317 (2014). http://dx.doi.org/10.1016/j.jiec.2013.10.007.   DOI
28 Haghgoo M, Yousefi AA, Mehr MJZ, Celzard A, Fierro V, Leon ard A, Job N. Characterization of multi-walled carbon nanotube dispersion in resorcinol-formaldehyde aerogels. Microporous Mesoporous Mater, 184, 97 (2014). http://dx.doi.org/10.1016/j.micromeso.2013.10.002.   DOI
29 Chaichanawong J, Kongcharoen K, Areerat S. Preparation of carbon aerogel microspheres by a simple-injection emulsification method. Adv Powder Technol, 24, 891 (2013). http://dx.doi.org/10.1016/j.apt.2013.05.014.   DOI
30 Chien HC, Cheng WY, Wang YH, Lu SY. Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites. Adv Funct Mater, 22, 5038 (2012). http://dx.doi.org/10.1002/adfm.201201176.   DOI
31 Worsley MS, Satcher JH, Baumann TF. Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. Langmuir, 24, 9763 (2008). http://dx.doi.org/10.1021/la8011684.   DOI
32 Wei S, Wu D, Shang X, Fu R. Studies on the structure and electrochemical performance of Pt/carbon aerogel catalyst for direct methanol fuel cells. Energy Fuels, 23, 908 (2009). http://dx.doi.org/10.1021/ef8006432.   DOI
33 Gui MM, Yap YX, Chai SP, Mohamed AR. Multi-walled carbon nanotubes modified with (3-aminopropyl)triethoxysilane for effective carbon dioxide adsorption. Int J Greenh Gas Con, 14, 65 (2013). http://dx.doi.org/10.1016/j.ijggc.2013.01.004.   DOI
34 Liu Z, Du ZY, Song H, Wang CY, Subhan F, Xing W, Yan ZF. The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption. J Colloid Interface Sci, 416, 124 (2014). http://dx.doi.org/10.1016/j.jcis.2013.10.061.   DOI
35 Perry RJ, Davis JL. $CO_2$ capture using solutions of alkanolamines and aminosilicones. Energy Fuels, 26, 2512 (2012). http://dx.doi.org/10.1021/ef201963m.   DOI
36 Meng LY, Park SJ. One-pot synthetic method to prepare highly Ndoped nanoporous carbons for $CO_2$ adsorption. Mater Chem Phys, 143, 1158 (2014). http://dx.doi.org/10.1016/j.matchemphys.2013.11.016.   DOI
37 Yu JH, Guo MY, Muhammad F, Wang AF, Yu GL, Ma HP, Zhu GS. Simple fabrication of an ordered nitrogen-doped mesoporous carbon with resorcinol-melamine-formaldehyde resin. Microporous Mesoporous Mater, 190, 117 (2014). http://dx.doi.org/10.1016/j.micromeso.2014.02.009.   DOI
38 Park SJ, Kim KD. Adsorption behaviors of $CO_2$ and $NH_3$ on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). http://dx.doi.org/10.1006/jcis.1998.6058.   DOI
39 Shen WZ, Fan WB. Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A, 1, 999 (2013). http://dx.doi.org/10.1039/c2ta00028h.   DOI
40 Wu ZX, Zhao DY. Ordered mesoporous materials as adsorbents. Chem. Commun, 47, 3332 (2011). http://dx.doi.org/10.1039/c0cc04909c.   DOI
41 Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M. Supercapacitors prepared from melamine-based carbon. Chem Mater, 17, 1241 (2005). http://dx.doi.org/10.1021/cm049337g.   DOI
42 He C, Hu XJ. Functionalized ordered mesoporous carbon for the adsorption of reactive dyes. Adsorption, 18, 337 (2012). http://dx.doi.org/10.1007/s10450-012-9410-6.   DOI