• Title/Summary/Keyword: volume size effect

Search Result 808, Processing Time 0.031 seconds

The Effects of the Microstructural Change of Dual Phase Steel on Fatigue Fracture Propagation (복합조직강의 미시조직변화가 피로파괴전파에 미치는 영향)

  • Oh, Sae-Wook;Kim, Ung-Jip
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.58-66
    • /
    • 1991
  • Not only difference of fatigue crack growth and propagation behavior resulted from the grain size, the hardness ratio and volume fraction in M.E.F. dual phase steel composed of martensite in hard phase and ferrite in soft phase, but also the effects of the plastic constraint were investigated by fracture mechanics and microstructural method. The main results obtained are as follows: 1) The fatigue endurance of M.E.F. steel increases with decreasing the grain size, increasing the ratio of hardness and volume fraction. 2) The initiation of slip and crack occures faster as the stress level goes higher. These phenomena result from the plastic constraint effect of the second phase. 3) The crack propagation rate in the constant stress level is faster as the grain size gets larger, the ratio of hardness lower and volume fraction smaller.

  • PDF

Effect of the Process Parameters on the Fe Nano Powder Formation in the Plasma Arc Discharge Process (플라즈마 아크 방전법에서 Fe 나노 분말 형성에 미치는 공정변수의 영향)

  • 이길근;김성규
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • To investigate the effect of the parameters of the plasma arc discharge process on the particle formation and particle characteristics of the iron nano powder, the chamber pressure, input current and the hydrogen volume fraction in the powder synthesis atmosphere were changed. The particle size and phase structure of the synthesized iron powder were studied using the FE-SEM, FE-TEM and XRD. The synthesized iron powder particle had a core-shell structure composed of the crystalline $\alpha$-Fe in the core and the crystalline $Fe_3O_4$ in the shell. The powder generation rate and particle size mainly depended on the hydrogen volume fraction in the powder synthesis atmosphere. The particle size increased simultaneously with increasing the hydrogen volume fraction from 10% to 50%, and it ranged from about 45nm to 130 nm.

Difference in Volume Perception of Cooked White Rice according to Size and Color of Rice Bowl in Normal and Obese Women (비만 여성과 정상체중 여성의 밥그릇 크기와 색상에 따른 백미밥 인지량의 차이)

  • Hong, Yang-Hee;Kim, Dong-Geon;Hurh, Jin-Sun;Lee, Myong-Ok;Kim, Yoon-Sook;Chang, Un-Jae
    • Journal of the Korean Dietetic Association
    • /
    • v.17 no.4
    • /
    • pp.378-386
    • /
    • 2011
  • To examine the effect of obesity on volume perception according to size and color of rice bowl, we divided female college students into a normal weight group (<30% fat mass, n=100) and obese group (${\geq}30%$ fat mass, n=83) and then measured perceived volume of rice bowls of various sizes (general size; 350 ml vs. small size; 188 ml) and color (yellow, white, blue, and black) containing the same amount of cooked white rice (210 g). Normal weight group perceived that the general rice bowl contained significantly more cooked white rice compared to the small rice bowl. In contrast, the obese group perceived that the general rice bowl contained significantly less cooked white rice than the small rice bowl. The estimated variance in perceived volume of both bowls was significantly bigger in the obese group compared to the normal group. There were no differences in perceived volume among any of the subjects (both normal and obese groups) according to rice bowl color. However, the estimated variance in perceived volume in the obese group was significantly larger than that in the normal group for all of the rice bowls. In conclusion, rice bowl size and color might affect volume perception, and volume perception in obese people may be different from that of normal weight people.

Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.527-546
    • /
    • 2018
  • This article presents an analysis into the nonlinear forced vibration of a micro cylindrical shell reinforced by carbon nanotubes (CNTs) with considering agglomeration effects. The structure is subjected to magnetic field and transverse harmonic mechanical load. Mindlin theory is employed to model the structure and the strain gradient theory (SGT) is also used to capture the size effect. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite cylindrical shell and consider the CNTs agglomeration effect. The motion equations are derived using Hamilton's principle and the differential quadrature method (DQM) is employed to solve them for obtaining nonlinear frequency response of the cylindrical shells. The effect of different parameters including magnetic field, CNTs volume percent and agglomeration effect, boundary conditions, size effect and length to thickness ratio on the nonlinear forced vibrational characteristic of the of the system is studied. Numerical results indicate that by enhancing the CNTs volume percent, the amplitude of system decreases while considering the CNTs agglomeration effect has an inverse effect.

Effect of particle size on direct shear deformation of soil

  • Gu, Renguo;Fang, Yingguang;Jiang, Quan;Li, Bo;Feng, Deluan
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • Soils are natural granular materials whose mechanical properties differ according to the size and composition of the particles, so soils exhibit an obvious scale effect. Traditional soil mechanics is based on continuum mechanics, which can not reflect the impact of particle size on soil mechanics. On that basis, a matrix-reinforcing-particle cell model is established in which the reinforcing particles are larger-diameter sand particles and the matrix comprises smaller-diameter bentonite particles. Since these two types of particles deform differently under shear stress, a new shear-strength theory under direct shear that considers the stress concentration and bypass phenomena of the matrix is established. In order to verify the rationality of this theory, a series of direct shear tests with different reinforcing particle diameter and volume fraction ratio are carried out. Theoretical analysis and experimental results showed that the interaction among particles of differing size and composition is the basic reason for the size effect of soils. Furthermore, the stress concentration and bypass phenomena of the matrix enhance the shear strength of a soil, and the volume ratio of reinforcing particles has an obvious impact on the shear strength. In addition, the newly proposed shear-strength theory agrees well with experimental values.

Experimental Study on Characteristics of Synergistic Effect of Fuel Mixing on Number Density and Size of Soot in Ethylene-base Counterflow Diffusion Flames by Laser Techniques

  • Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.378-386
    • /
    • 2009
  • The effect of fuel mixing on soot structure with methane, ethane, and propane to ethylene-base counterflow diffusion flames has been investigated by measuring the volume fraction, number density, and particle size of soot by adopting the light extinction/scattering techniques. The experimental result showed that the mixing of ethane and propane in ethylene diffusion flame increased soot volume fraction while the mixing of methane decreased. As compare to the ethylene-base flame, the diameters of soot particles for mixture flames are slightly smaller. While the soot number densities for the mixture flames are much higher. Thus, the increase in the soot volume fraction can be attributed to the appreciably increased soot number density by the fuel mixing.

Pore Filling Theory of Liquid Phase Sintering and Microstrcture Evolution (액상소결의 기공채움 이론과 미세구조 발달)

  • 이성민
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.81-87
    • /
    • 1999
  • Based on the pore filling theory, the microstructure evolution during liquid-phase sintering has been analyzed in terms of interrelationship between average grain size and relative density. For constant liquid volume fraction, the microsturucture trajectories reduced to a single curve in a grain size(x)-density(y) map, regardless of grain growth constant. The slope of curves in the map was inversely proportional to average pore size, while it increased fapidly with liquid volume fraction. Increase in pore volume fraction retarded the densification considerably, but showed marginal effect on the slope. The activation energy of densification was predicted to be the same as that of grain growth as long as the liquid volume fraction is constant for any temperature range studied. The present analyses on microstricture evolution may demonstrate the usefulness of pore filling theory and provide a guideline for process optimization of liquid-phase sintering.

  • PDF

Asset Pricing and the Volume Effect

  • Park, Jin-Woo;Dukas, Stephen
    • The Korean Journal of Financial Studies
    • /
    • v.2 no.1
    • /
    • pp.127-144
    • /
    • 1995
  • Previous literature in financial economics documents the existence of a liquidity premium in expected returns, measured by the bid-ask spread. This study provides a more comprehensive test of the egect of liquidity on common stock returns by including trading volume as an additional liquidity measure. we find that trading volume is a relevant measure of liquidity, and affects expected returns even aher controlling for the effects of systematic risk, firm size, and the relative bid-ask spread. We also find that trading volume complements the bid-ask spread as a liquidity measure, and provides additional information about the liquidity premium. The liquidity effect emerges in non-January months as a volume effect, in addition to the spread effect in January documented by Eleswarapu and Reinganum(1993).

  • PDF

Effect of Heat Treatment Temperature on Amount of Stress-Induced ${\varepsilon}$ Martensite in an Fe-Mn Baesd Alloy (Fe-Mn계 합금에서 응력유기 ${\varepsilon}$ 마르텐사이트의 양에 미치는 열처리 온도의 영향)

  • Jee, K.K.;Han, J.H.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.6
    • /
    • pp.342-345
    • /
    • 2004
  • In this work, a new method of measuring volume fraction of deformation-induced ${\varepsilon}$ martensite is proposed using endothermic heat on reverse transformation. As grain size increases, the amount of ${\varepsilon}$ martensite forming on cooling increases. However, with a decrease in grain size, more ${\varepsilon}$ is induced by deformation, improving shape memory effect.

Structure of a single polymer chain confined in a dense array of nanoposts

  • Joo, Heesun;Kim, Jun soo
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.48-52
    • /
    • 2015
  • Control of polymer conformations in heterogeneous confinement plays an important role in natural and engineering processes. We present a simulation study on the conformational structure and dynamics of a single, flexible polymer in a dense array of nanoposts with different sizes and separations, especially, when the volume of the interstitial space formed between four nanoposts is less than the size of the polymer chain. When a polymer is placed in the array of nanoposts, the size of polymer increases compared with that in the absence of nanoposts due to the confinement effect. It is shown that when a polymer is confined in the array of nanoposts the chain is elongated in the direction parallel to the nanoposts. As the interstitial volume between four nanoposts decreases either by increasing the nanopost diameter or by decreasing the separation between nanoposts, the chain elongation becomes more pronounced. On the contrary, the polymer size varies in a non-monotonic fashion, with an initial elongation followed by a chain contraction, as the interstitial volume is reduced both by increasing the nanopost diameter and decreasing the separation at the same time while keeping constant the width of the passageway between two nanoposts. The simulation analysis shows that the non-monotonic dependence of polymer size is determined by interplay between the chain alignment along the nanoposts in each interstitial volume and the chain spreading through passageways over several interstitial volume.

  • PDF