Pore Filling Theory of Liquid Phase Sintering and Microstrcture Evolution

액상소결의 기공채움 이론과 미세구조 발달

  • 이성민 (한국과학기술원 재료계면공학연구센터)
  • Published : 1999.03.01

Abstract

Based on the pore filling theory, the microstructure evolution during liquid-phase sintering has been analyzed in terms of interrelationship between average grain size and relative density. For constant liquid volume fraction, the microsturucture trajectories reduced to a single curve in a grain size(x)-density(y) map, regardless of grain growth constant. The slope of curves in the map was inversely proportional to average pore size, while it increased fapidly with liquid volume fraction. Increase in pore volume fraction retarded the densification considerably, but showed marginal effect on the slope. The activation energy of densification was predicted to be the same as that of grain growth as long as the liquid volume fraction is constant for any temperature range studied. The present analyses on microstricture evolution may demonstrate the usefulness of pore filling theory and provide a guideline for process optimization of liquid-phase sintering.

Keywords

References

  1. J. Appl. Phys. v.32 R. L. Coble
  2. J. Am. Ceram. Soc. v.52 R. J. Brook
  3. Mater. Sci. Eng. v.48 M. F. Yan
  4. Proc. Brit. Cerm. Soc. v.32 R. J. Brook
  5. Structure and Properties of MgO and $Al_2O_3$ Ceramics M. P. Harmer;W. D. Kingery(Ed.)
  6. Structure and Properties of MgO and $Al_2O_3$ Ceramics C. A. Handwerker;R. M. Cannon;R. L. Coble;W. D. Kingery(Ed.)
  7. J. Appl. Phys. v.30 W. D. Kingery
  8. Acta Metall. v.22 S.-J. L. Kang;W. A. Kaysser;G. Petzow;D. N. Yoon
  9. Scripta Metall. v.24 D.-D. Lee;S.-J. L. Kang;D. N. Yoon
  10. J. Mater. Sci. v.20 W. A. Kaysser;M. Zivkovic;G. Petzow
  11. Powder Metall. v.27 S.-J. L. kang;W. A. Kaysser;G. Petzow;D. N. Yoon
  12. Metall. Trans. A v.20 J.-K. Park;S.-J.Kang;K. Y. Eun;D. Y. Yoon
  13. Proc. 5th Int. Conf. in Sintering and Related Phenomena Sintering Process O.-J. Kwon;D. N. Yoon;Kuczynski(Ed.)
  14. Int. J. Powder Metall. Powder Tech. v.17 O.-J. Kwon;D. N. Yoon
  15. Metall. Trans. A v.15 H.-H. Park;S.-J. Cho;D. N. Yoon
  16. Powder Metall. v.28 S.-J. L. Kang;P. Azou
  17. Metall. Trans. A v.17 S.-J. Cho;S.-J. L. Kang;D. N. Yoon
  18. Metall. Trans. A v.17 H. -H. Park;O.-J. Kwon;D. N. Yoon
  19. Sintering Technology S.-J. Kang;K.-H. Kim;S.-M. Lee;R. M. German(Eds.);G. L. Messing(Eds.);R. G. Conwall(Eds.)
  20. Acta. Mater. v.46 S.-M. Lee;S.-J. Kang
  21. Chemical Thermodynamics of Materials C. H. P. Lupis
  22. Metall. Trans. A v.17 H.-H. Park;S.-J. Kang;D. N. Yoon
  23. J. Am. Ceram. Soc. v.72 S.-J. L. Kang;P. Greil;M. Mitomo;J. -H. Moon
  24. J. Am. Ceram. Soc. v.74 S.-J. L. Kang;K.-H. Kim;D. Y. Yoon
  25. Phys. Chem. Solids v.19 I. M. Lifshitz;V. V. Slyozov
  26. Z. Electrochem v.65 C. Wangner
  27. Metall. Trans. A v.13 S. S. Kang;D. N. Yoon