• Title/Summary/Keyword: volume function model

Search Result 506, Processing Time 0.023 seconds

An Empirical Analysis on the Long-term Balance of Bunker Oil Prices Using the Co-integration Model and Vector Error Correction Model (공적분·벡터오차수정모형을 활용한 벙커유 가격의 장기균형 수렴에 관한 실증분석)

  • Ahn, Young-Gyun;Lee, Min-Kyu
    • Korea Trade Review
    • /
    • v.44 no.1
    • /
    • pp.75-86
    • /
    • 2019
  • This study performs a factor analysis that affects the bunker oil price using the Co-integration model and Vector Error Correction Model (VECM). For this purpose, we use data from Clarkson and the analysis results show 17.6% decrease in bunker oil price when the amount of crude oil production increases at 1.0%, 10.3% increase in bunker oil price when the seaborne trade volume increases at 1.0%, 1.0% decrease in bunker oil price when total volume of vessels increases at 1.0%, and 0.003% increase in bunker oil price when 1.0% increase in world GDP, respectively. This study is meaningful in that this study estimates the speed of convergence to long-term equilibrium and identifies the price adjust mechanism which naturally exists in bunker oil market. And it is expected that the future study can provide statistically more meaningful econometric results if it can obtain data during more long-periods and use more various kinds of explanatory variables.

Shape Optimization of a Micro-Channel Using Kriging Model (크리깅 모델을 이용한 미세유로의 형상최적설계)

  • Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.733-740
    • /
    • 2007
  • Microchannel heat sink shape optimization is performed using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

Determination of the Wear Limit to the Process Mean Shift Problem with Varying Product and Process Variance (생산량과 공정분산이 변하는 공정평균이동 문제의 마모한계 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.95-100
    • /
    • 2020
  • Machines and facilities are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. The representative type of the degeneration is wear of tool or machine. According to the increasing wear level, non-conforming products cost and quality loss cost are increasing simultaneously. Therefore a periodic preventive resetting the process is necessary. The total cost consists of three items: adjustment cost (or replacement cost), non-conforming cost due to product out of upper or lower limit specification, and quality loss cost due to difference from the process target value and the product characteristic value among the conforming products. In this case, the problem of determining the adjustment period or wear limit that minimizes the total cost is called the 'process mean shift' problem. It is assumed that both specifications are set and the wear level can be observed directly. In this study, we propose a new model integrating the quality loss cost, process variance, and production volume, which has been conducted in different fields in previous studies. In particular, for the change in production volume according to the increasing in wear level, we propose a generalized production quantity function g(w). This function can be applied to most processes and we fitted the g(w) to the model. The objective equation of this model is the total cost per unit wear, and the determining variables are the wear limit and initial process setting position that minimize the objective equation.

Effective Longitudinal Shear Modulus of Continuous Fiber-Reinforced 3-Phase Composites (연속섬유가 보강된 3상 복합재료의 종방향 전단계수 해석)

  • Jeong, Tae-Heon;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2782-2791
    • /
    • 1996
  • The effective longitudinal shear modulus(LSM) of continuous composites is studied theoretically and numerically using 3-phase unit cell model. Circular, hexagonal and rectangular shapes of reinforced fiber are considered to predict the shear modulus as a function of elastic modulus of each phase and volume fraction of interphase and reinforced fiber. It is found that rectangular fiber shape in low fiber volume fraction($v_f$<30%) and circular fiber shape in high volume fraction($v_f$>40%) shows the higher longitudinal shear modulus. Also the obtained values of LSM for rectangular array and by numerical analysis are higher than those of hexagonal array and by theoretical analysis respectively. The reinforcing effects of interphase are more significant in cases of higher fiber volume fraction and circular fiber shape. Not only the spatial distribution and shape of reinforcing fiber but also the volume of interphase have a pronounced effects on the overall LSM. It is also found that the tangent moduous of 2-and 3-phase polymer matrix composites is insensitive to the shape and distribution of reinforcing fibers.

Reliability evaluation of brittle structures under thermal shocks (열충격이 작용하는 취성구조의 신뢰성 평가)

  • 이치우;장건익;김종태
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 1998
  • An analysis method for the reliability of ceramic structures subjected to thermal shocks is presented. Flaws with the size of given probability distribution function are assumed to be distributed at random with a certain density per unit volume in the structures. Criterions for crack instability are derived for brittle solids under general thermal stresses. A probabilistic failure model is presented to study the probability of crack instability for brittle solids containing cracks with uncertain size. The reliabilities of brittle structures are evaluated based on the weakest-link hypothesis, which states that a structure fails when the cracks in any differential volume become unstable. A numerical example is given to demonstrate the application of the proposed method.

  • PDF

Assessment of Numerical Optimization Algorithms in Design of Low-Noise Axial-Flow Fan (축류송풍기의 저소음 설계에서 수치최적화기법들의 평가)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1335-1342
    • /
    • 2000
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, incompressible, three-dimensional Reynolds-averaged Navier-Stokes equations are used as governing equations, and standard k- ${\varepsilon}$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Two variables concerning sweep angle distribution are selected as the design variables. Performance of the final fan designed by the optimization was tested experimentally.

Assessment of Optimization Methods for Design of Axial-Flow Fan (축류송풍기 설계를 위한 최적설계기법의 평가)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.221-226
    • /
    • 1999
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, Incompressible, three-dimensional Reynolds-averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Sweep angle distributions are used as design variables.

  • PDF

Comparative Analysis of Import Substitution Relations of Frozen Squid Demand -Focused on The Rotterdam Model and The Almost Ideal Demand System- (냉동 오징어 수요의 수입대체관계 비교 분석 -로테르담모형과 준이상수요체계를 중심으로-)

  • Woo, Kyeong-Won;Shin, Yong-Min
    • The Journal of Fisheries Business Administration
    • /
    • v.53 no.1
    • /
    • pp.55-72
    • /
    • 2022
  • The domestic catch of squid is decreasing every year. Import volume is increasing to replace these domestic products. Import volume is expected to increase in the future, so it is necessary to study import substitution. Therefore, in this study, after selecting frozen squid, which accounts for the majority of imported squid, as the target fish species, China, Chile and Peru, which account for the majority of frozen squid imports, will be selected as the target countries for analysis. Then, the demand function of squid is estimated using the Rotterdam model, the inverse Rotterdam model, AIDS and inverse AIDS, which are the simultaneous equation demand types, and then elasticity is derived. After that, these models are compared in terms of significance, theoretical fit and practical fit.

Soil-Water Characteristic Curves of Residual Soils and Deformable Soils (풍화잔적토와 체적이 변하는 흙의 흙-수분 특성곡선)

  • 이인모;이형주;김기섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.265-272
    • /
    • 2000
  • This study introduces the current theory of the SWCC and tries to verify the theory by performing laboratory tests for the local soils of Korea. First, the SWCCs of Poi-dong soil and Shinnae-dong soil, the most typical weathered residual soils in Korea, were experimentally obtained and the results were compared among others. Second, a SWCC model for deformable soils was proposed. For deformable soils, which show huge volume change during desaturation, the volume change behavior should be considered, and the SWCC should be expressed as a function of void ratio as well as suction.

  • PDF

Comparing BRDF Models: Representation of Measured BRDF (BRDF 모델비교: 측정 BRDF의 표현을 중심으로)

  • Lee, Joo-Haeng;Kim, Sung-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.346-354
    • /
    • 2009
  • BRDF (bidirectional reflectance distribution function) is critical in realistic simulation of material appearances since it models the directional characteristics of reflection of light. Although many BRDF models have been proposed so far, it is still not easy to find one specific model that could represent all the reflection properties of real materials such as generalized diffusion, off-specular reflection, Fresnel effect, and back scattering. In this paper, we compare three BRDF models including B-spline volume BRDF (BVB), Cook-Torrance, and Lafortune in their ability to represent the measured BRDF data for physically-based rendering. We show that B-spline volume BRDF surpass the others in quality of data fitting and rendering, especially for materials without specular reflections.