• Title/Summary/Keyword: volume fraction

검색결과 2,383건 처리시간 0.027초

연속섬유가 보강된 3상 복합재료의 종방향 전단계수 해석 (Effective Longitudinal Shear Modulus of Continuous Fiber-Reinforced 3-Phase Composites)

  • 정태헌;이동주
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2782-2791
    • /
    • 1996
  • The effective longitudinal shear modulus(LSM) of continuous composites is studied theoretically and numerically using 3-phase unit cell model. Circular, hexagonal and rectangular shapes of reinforced fiber are considered to predict the shear modulus as a function of elastic modulus of each phase and volume fraction of interphase and reinforced fiber. It is found that rectangular fiber shape in low fiber volume fraction($v_f$<30%) and circular fiber shape in high volume fraction($v_f$>40%) shows the higher longitudinal shear modulus. Also the obtained values of LSM for rectangular array and by numerical analysis are higher than those of hexagonal array and by theoretical analysis respectively. The reinforcing effects of interphase are more significant in cases of higher fiber volume fraction and circular fiber shape. Not only the spatial distribution and shape of reinforcing fiber but also the volume of interphase have a pronounced effects on the overall LSM. It is also found that the tangent moduous of 2-and 3-phase polymer matrix composites is insensitive to the shape and distribution of reinforcing fibers.

석고 혼입율에 따른 초미분 고로슬래그 치환 시멘트 페이스트의 유동특성 (Rheology Properties of Ultrafine Blast Furnace Slag Replacement Cement Paste on Gypsum Volume Fraction)

  • 이건영;이건철;최중구;김우재
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.178-179
    • /
    • 2014
  • The fine blast furnace slag is widely used as the admixture as it helps to increase the fluidity, long term strength of the concrete but decrease the heat of hydration. In case of the fine blast furnace slag, if the fineness of the slag is enhanced with the addition of gypsum to the concrete for the supplement of low strength in early stage and the facilitation of the initial hydration, the quality of the concrete is expected to change depending on the volume of the gypsum volume fraction. But, up to now the study on the fine blast furnace slag has only focused on the effect of fineness, replacement and admixture and there have been almost no studies on the effect of the gypsum volume fraction. Accordingly, this study focuses on what effect the gypsum volume fraction would make on the fluidity characteristics of the ultrafine furnace slag cement paste by using the rheology properties.

  • PDF

NiAl/Ni 미세적층복합재료의 고속변형거동 (High Strain-rate Deformation Behavior of NiAl/Ni Micro-laminated Composites)

  • 김희연;김진영;정동석;;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.237-240
    • /
    • 2004
  • High strain-rate deformation behavior of NiAl/Ni micro-laminated composites was characterized by split hopkins on pressure bar(SHPB). When the strain rate increased, the compressive stress of micro-laminated composites were increased a little. When the intermetallic volume fraction increased, the compressive stress of micro-laminated composites increased linearly irrespective of strain rate. Absorbed energy during the quasi-static and SHPB tests was calculated from the integrated area of stress-strain curve. Absorbed energy of micro-laminated composites deviated from the linearity in terms of the intermetallic volume fraction but merged to the value of intermetallic as the strain rate increased. This was due to high tendency of intermetallic layer for the localization of shear deformation at high strain rate. Microstructure showing adibatic shear band(ASB) confirmed that the shear strain calculated from the misalignment angle of each layer increased and ASB width decreased when the intermetallic volume fraction. Simulation test impacted by tungsten heavy alloy cylinder resulted that the absorbed energies multiplied by damaged volume of micro-laminated composites were decreased as the intermetallic volume fraction increased. Fracture mode were changed from delamination to single fracture when the intermetallic volume fraction and this results were good matched with previous results[l] obtained from the fracture tests.

  • PDF

2차원 압축공기-물의 압축성 이상 유동 수치 해석 (Numerical Analysis for Two-Dimensional Compressible and Two-Phase Flow Fields of Air-Water in Eulerian Grid Framework)

  • 박찬욱;이승수
    • 대한기계학회논문집B
    • /
    • 제32권6호
    • /
    • pp.429-445
    • /
    • 2008
  • Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of each phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe‘s approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated.

재생골재 및 섬유 혼입률에 따른 포장용 투수성 폴리머 콘크리트의 역학적 특성 (Mechanical Properties of Permeable Polymer Concrete for Permeability Pavement with Recycled Aggregate and Fiber Volume Fraction)

  • 성찬용;김영익
    • 한국농공학회논문집
    • /
    • 제52권1호
    • /
    • pp.69-77
    • /
    • 2010
  • Research on permeable pavement like asphalt and concrete pavement with porous structure has been increasing due to environmental and functional need such as reduction of run off and flood, and increase and purification of underwater resource. This study was performed to evaluate permeability, strengths and durability of permeable polymer concrete (PPC) using recycled aggregate that is obtained from waste concrete. Also, 6mm length of polypropylene fiber was used to increase toughness and interlocking between aggregate and aggregate surrounded by binder. In the test results, regardless of kinds of aggregates and fiber contents, the compressive strength and permeability coefficient of all types of PPC showed the higher than the criterion of porous concrete that is used in permeable pavement in Korea. Also, strengths of PPC with increase polypropylene fiber volume fraction showed slightly increased tendency due to increase binder with increase of fiber volume fraction. The weight reduction ratios for PPC after 300 cycles of freezing and thawing were in the range of 1.6~3.8 % and 2.2~5.6 %, respectively. The weight change ratio was very low regardless of the fiber volume fraction and aggregates. The weight reduction ratios of PPC with fiber and aggregate were in the range of 1.3~2.7 % and 2.2~3.2 % after 13 weeks and was very low regardless of the fiber volume fraction and aggregates.

Mg-Al 합금에서 불연속 석출물의 부피 분율에 의한 경도 및 열전도도의 변화 (Changes in Hardness and Thermal Conductivity with Volume Fraction of Discontinuous Precipitates in Mg-Al Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제34권6호
    • /
    • pp.302-308
    • /
    • 2021
  • The aim of this study was to investigate the dependence of the hardness and thermal conductivity on the volume fraction of discontinuous precipitates (DPs) in the Mg-9.3%Al alloy with (α-(Mg)+DPs) dual phase structure. In order to obtain various DPs volume fractions, the alloy was solution-treated at 688 K for 24 h and then aged at 418 K for up to 144 h. The volume fraction of DPs increased from 0% to 63% with an increase in the aging time up to 72 h, over which, continuous precipitation was observed within the α-(Mg) grains. It is noticeable that the hardness and thermal conductivity of the alloy increased linearly with the volume fraction of DPs. The improved hardness and thermal conductivity with respect to volume fraction of DPs are closely associated with the higher hardness of the DPs with fine (α+β) lamellar structure and the lower Al concentration in the α phase layer of the DPs, respectively.

원통형 셀 구조를 갖는 한방향 CFRP 적층 복합재료의 정적인장파괴거동 (Mechanical Properties and Fracture Behavior of Cylindrical Shell Type for Unidirectional CFRP Composite Material under Tension Load)

  • 오환섭
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.273-278
    • /
    • 1998
  • In this paper, basic micro-mechanical properties of unidirectional CFRP composite shell such as bonding strength, fiber volume fraction and void fraction are measured and tensile strength test is performed with a fixture. And then fracture surfaces are observed by SEM. In case of basic micro-mechanical properties, bonding strength is reduce with decreasing of radius of each ply in a shell for the effect of residual stress, fiber volume fraction is smaller than plate, and void fraction is vise versa. For these reason, tensile strength of shell is smaller than plate fabricated with same prepreg. For failure mode shell has many splitted part along its length, and it is assumed that this phenomenon is caused by the difference of bonding strength for residual stress.

  • PDF

섬유 혼입률에 따른 섬유보강 경량골재 콘크리트의 역학적 특성 (Effect of Volume Fraction of Fibers on the Mechanical Properties of a Lightweight Aggregate Concrete Reinforced with Polypropylene Fibers)

  • 이행기;송수용
    • 콘크리트학회논문집
    • /
    • 제18권6호
    • /
    • pp.743-748
    • /
    • 2006
  • 본 논문은 오토클레이브 양생과정 없이 제작되는 섬유보강 경량골재 콘크리트(FRLAC)의 섬유 혼입률에 따른 역학적 특성의 변화를 알아보기 위해 수행된 실험적 연구의 결과에 대해 서술하고 있다. FRLAC는 폴리프로필렌 섬유와 경량골재를 혼입함으로써 기포 콘크리트의 강도를 증진시켰다. 섬유의 혼입률이 FRLAC의 역학적 특성에 미치는 영향을 알아보고 최적 섬유 혼입량을 결정하기 위해 폴리프로필렌 섬유의 혼입률이 0%, 0.10%, 0.25%, 0.50%인 공시체들을 제작하여 일련의 압축강도시험과 휨강도시험을 수행하였다. 시험 결과 0.25%의 섬유 혼입률에서 압축강도가 가장 많이 증대되었고, 섬유가 FRLAC의 균열진전을 제어함을 알 수 있었다.

나노유체 특성에 따른 히트파이프 성능해석 (Theoretical Analysis of Heat Pipe Thermal Performance According to Nanofluid Properties)

  • 임승민
    • 대한기계학회논문집B
    • /
    • 제39권7호
    • /
    • pp.599-607
    • /
    • 2015
  • 본 연구에서는 나노유체의 유동학 특성을 반영한 히트파이프 열적특성을 연구하였다. $Al_2O_3$와 CuO 나노입자를 적용한 나노유체를 작동유체로 하여 나노입자 부피비와 응집도에 대한 히트파이프 성능을 확인하였다. 나노입자의 부피비와 응집도가 증가할수록 점성과 열전도도는 증가하는 것으로 나타났으며 두 인자는 히트파이프 성능에 영향을 주었다. 나노입자응집이 없는 경우에는 나노입자의 부피비 증가가 모세관압력한계 성능을 향상시켰지만 응집도가 증가하면 입자부피비가 증가해도 모세관압력한계가 감소했다. 그리고 나노입자의 열전도도, 부피비, 응집도에 대한 히트파이프 열저항을 분석하였다. 히트파이프의 투과율이 높을수록 최대열수송량은 입자부피비에 미치는 영향이 컸으며 3차원 그래프를 통해 윅 특성에 대한 최적화된 나노입자부피비를 확인하였다.

Fe-26Mn-4Co-2Al 합금의 감쇠능에 미치는 가공 유기 마르텐사이트의 영향 (Effect of Deformation Induced Martensite on the Damping Capacity of Fe-26Mn-4Co-2Al Alloy)

  • 정규성;강창룡
    • 한국재료학회지
    • /
    • 제26권9호
    • /
    • pp.493-497
    • /
    • 2016
  • This study was carried out to investigate the effect of deformation induced martensite on the damping capacity of Fe-26Mn-4Co-2Al damping alloy. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite were formed by cold working, and; deformation induced martensite was formed with according to the specific direction and the surface relief. With an increasing degree of cold rolling, the volume fraction of ${\alpha}^{\prime}$-martensite increased rapidly, while the volume fraction of ${\varepsilon}$-martensite decreased after rising to a maximum value at a specific level of cold rolling. Damping capacity was increased, and then decreased with an increasing of the degree of cold rolling. Damping capacity was influenced greatly by the volume fraction of ${\varepsilon}$-martensite formed by cold working, but the effect of the volume fraction of ${\alpha}^{\prime}$-martensite have a actually on effect on the damping capacity.