DOI QR코드

DOI QR Code

Theoretical Analysis of Heat Pipe Thermal Performance According to Nanofluid Properties

나노유체 특성에 따른 히트파이프 성능해석

  • Lim, Seung Min (The 6th Research and Development Institute, Agency for Defense Development)
  • 임승민 (국방과학연구소 6기술연구본부)
  • Received : 2015.03.18
  • Accepted : 2015.05.06
  • Published : 2015.07.01

Abstract

In this study, we theoretically investigate the thermal performances of heat pipes that have different nano-fluid properties. Two different types of nano-particles have been used: $Al_2O_3$ and CuO. The thermal performances of the heat pipes are observed for varying nano-particle aggregations and volume fractions. Both the viscosity and the conductivity increase as the volume fraction and the aggregation increase, respectively. Increasing the volume fraction helps increase the capillary limit in the well-dispersed condition. Whereas, the capillary limit is decreased under the aggregate condition, when the volume fraction increases. The dependence of the heat pipe thermal resistance on the volume fraction, aggregation, and conductivity of the nano-particles is analyzed. The maximum thermal transfer of the heat pipe is highly dependent on the volume fraction because of the high permeability of the heat pipe. For the proposed heat pipe, the optimum volume fraction of the nano-particle can be seen through 3D graphics.

본 연구에서는 나노유체의 유동학 특성을 반영한 히트파이프 열적특성을 연구하였다. $Al_2O_3$와 CuO 나노입자를 적용한 나노유체를 작동유체로 하여 나노입자 부피비와 응집도에 대한 히트파이프 성능을 확인하였다. 나노입자의 부피비와 응집도가 증가할수록 점성과 열전도도는 증가하는 것으로 나타났으며 두 인자는 히트파이프 성능에 영향을 주었다. 나노입자응집이 없는 경우에는 나노입자의 부피비 증가가 모세관압력한계 성능을 향상시켰지만 응집도가 증가하면 입자부피비가 증가해도 모세관압력한계가 감소했다. 그리고 나노입자의 열전도도, 부피비, 응집도에 대한 히트파이프 열저항을 분석하였다. 히트파이프의 투과율이 높을수록 최대열수송량은 입자부피비에 미치는 영향이 컸으며 3차원 그래프를 통해 윅 특성에 대한 최적화된 나노입자부피비를 확인하였다.

Keywords

References

  1. Naphon, P., Assadamongkol, P. and Borirak, T., 2008, "Experimental Investigation of Titanium Nanofluids on the Heat Pipe Thermal Efficiency," Int. Communications in Heat and Mass Transfer, Vol. 36, No. 10, pp. 1316-1319.
  2. Tsai, C. Y., Chien, H. T., Ding, P. P., Chan, B., Luh, T. Y. and Chen, P. H., 2004, "Effect of Structural Character of Gold Nanoparticles in Nanofluid on Heat Pipe Thermal Performance," Materials Letters, Vol. 58, No. 9, pp. 1461-1465. https://doi.org/10.1016/j.matlet.2003.10.009
  3. Shafahi, M., Bianco, V., Vafai, K. and Mancam, O., 2010, "An Investigation of the Thermal Performance of Cylindrical Heat Pipes Using Nanofluids," Int. J. Heat and Mass Transfer, Vol. 53, No. 1-3, pp. 376-383. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.019
  4. Chen, H. S., Ding, Y. L., Lapkin, A. and Fan, X., 2009, "Rheological Behaviour of Ethylene Glycol-Titanate Nanotube Nanofluids," J. Nanopart Res. Vol. 11, No. 6, pp. 1513-1520. https://doi.org/10.1007/s11051-009-9599-9
  5. Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N. B. and Mare, T., 2007, "Temperature and Particles Size Dependent Viscosity Data for Water-Based Nanofluid-Hysteresis Phenomenon," Int. J. Heat Fluid Flow, Vol. 28, No. 6, pp. 1492-1506. https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004
  6. Keblinski, P., Phillpot, S. R., Choi, S. U. and Eastman, J. A., 2002, "Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles(nanofluids)," Int. J. Heat Mass Transfer, Vol. 45, No. 4, pp. 855-863. https://doi.org/10.1016/S0017-9310(01)00175-2
  7. Brinkman, H. C., 1952, "The Viscosity of Concentrated Syspensions and Solutions," J. Chem. Phys., Vol. 20, No. 4, pp. 571-571. https://doi.org/10.1063/1.1700493
  8. Chen, H., 2009, "Predicting Thermal Conductivity of Liquid Suspensions of Nanoparticles(Nanofluids) Based on Rheology," Particleology, Vol. 7, No. 2, pp. 151-157. https://doi.org/10.1016/j.partic.2009.01.005
  9. Prasher, R., Song, D. and Wang, J., 2006a, "Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications," Appl. Phys. Lett., Vol. 89, No. 13, pp. 133108-1-3. https://doi.org/10.1063/1.2356113
  10. Prasher, R., Phelan, P. and Bhattacharya, P., 2006b, "Effect of Aggregation Kinetics on Thermal Conductivity of Nanoscales Colloidal Solutions(Nanofluid)," Nano Lett., Vol. 6, No. 7, pp. 1529-1534. https://doi.org/10.1021/nl060992s
  11. Periyasamy, M. K., Jegadeesan, K., Rengasamy, T., Seshachalam, S. and Sivan, S, 2015, "Review on Nanofluids Theoretical Thermal Conductivity Models," Engineering Journal, Vol. 19, No. 1, pp. 67-83. https://doi.org/10.4186/ej.2015.19.1.67
  12. Zhu, N. and Vafai, K., 1999, "Analysis of Cylindrical Heat Pipes Incorporating the Effects of Liquid-Vapor Coupling and Non-Darcian Transport-A Closed form Solution," Int. J. Heat Trasnfer, Vol. 42, No. 18, pp. 3405-3418. https://doi.org/10.1016/S0017-9310(99)00017-4
  13. Masuda, H., Ebata, A., Teramae, K. and Hishinuma, N., 1993, "Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra Fine Particles," Netsu. Bussei., Vol. 7, No. 4, pp. 227-233. https://doi.org/10.2963/jjtp.7.227
  14. Lee. S., Choi. S., Li. S. and Esatman J. A., 1999, "Measuring Thermal Conductivity of Fluids Containing oxide Nanoparticles," J. HEAT transfer, Vol. 121, No. 2, pp.280-289. https://doi.org/10.1115/1.2825978
  15. Wang. X., Xu. X. and Choi. S., 1999, "Thermal Conductivity of Nanoparticle Fluid Mixture," J. Thermophys. Heat Trans., Vol. 13, No. 4, pp. 474-480. https://doi.org/10.2514/2.6486
  16. Fei, D., Dingtina. K. and Alexandru. C., 2011, "Viscosity Affected by Nanoparticle Aggregation in $Al_2O_3$ Water Nanofluids," Nanoscale Research Letters, Vol. 6, No. 1, pp. 248-253. https://doi.org/10.1186/1556-276X-6-248
  17. Tanman, I., Turgut, A., chirtoc, M., Schuchmann, H. P. and Tanvaman, S., 2008, "Experimental Investigation of Viscosity and Thermal Conductivity of Suspensions Containing Nanosized Ceramic Particle," Archives of Materials Science and Engineering, Vol. 34, No. 2, pp. 99-103.