• Title/Summary/Keyword: voltage-to -current converter

Search Result 1,853, Processing Time 0.026 seconds

Current Control for Three Phase PWM Converter Using LQ Controller with Conditional Integrator (조건부 적분기를 가지는 LQ 제어기를 이용한 3상 PWM 컨버터의 전류제어)

  • 김홍성;전윤석;조영준;목형수;최규하;김한성
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.345-351
    • /
    • 1997
  • In this paper, controller for PWM converter considering unsymetrical input voltage is designed and current controller using LQ controller with conditional integrator is proposed. And the proposed current controller is compared with other current controller-predictive controller, decoupling PI controller. As simulation results, LQ controller with Conditional Integrator shows the improved performance for DC link voltage regulation through transient test of load variation. And when unsymeritrical input voltage is applied to converter with conventional current controller considering only symetrical input voltage, input current is distorted but it is showed that current controller considering unsymetrical input has robust control characteristics under phase voltage unbalance.

  • PDF

Interleaved ZVS Resonant Converter with a Parallel-Series Connection

  • Lin, Bor-Ren;Shen, Sin-Jhih
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.528-537
    • /
    • 2012
  • This paper presents an interleaved resonant converter with a parallel-series transformer connection in order to achieve ripple current reduction at the output capacitor, zero voltage turn-on for the active switches, zero current turn-off for the rectifier diodes, less voltage stress on the rectifier diodes, and less current stress on the transformer primary windings. The primary windings of the two transformers are connected in parallel in order to share the input current and to reduce the root-mean-square (rms) current on the primary windings. The secondary windings of the two transformers are connected in series in order to ensure that the transformer primary currents are balanced. A full-wave diode rectifier is used at the output side to clamp the voltage stress of the rectifier diode at the output voltage. Two circuit modules are operated with the interleaved PWM scheme so that the input and output ripple currents are reduced. Based on the resonant behavior, all of the active switches are turned on under zero voltage switching (ZVS), and the rectifier diodes are turned off under zero current switching (ZCS) if the operating switching frequency is less than the series resonant frequency. Finally, experiments with a 1kW prototype are described to verify the effectiveness of the proposed converter.

Design of an Integrated Current-Voltage Charging Compensator for the LLC Resonant Converter-Based Li-ion Battery Charger (LLC 공진형 컨버터 기반 리튬이온 배터리 충전기의 통합 전류-전압 보상기 설계방법 연구)

  • Choi, Yeong-Jun;Choi, See-Young;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.126-133
    • /
    • 2017
  • The conventional battery charger requires two separate voltage and current compensators to achieve constant current and constant-current-charging profile. This compensator configuration leads to an inevitable transient response during the mode change between the constant current and the constant voltage operation. Futhermore, a tedious and complicated design process is required to consider a widely changing battery voltage and the nonlinear electrical properties of Li-ion battery. This study proposes a single integrated voltage-current compensator of the LLC resonant converter for Li-ion battery charger applications to overcome the aforementioned drawbacks. The proposed compensator is designed to provide a smooth and reliable performance during the entire charging process while providing the reduced design efforts and seamless mode transient response. Several experimental results based on a 300 W prototype converter and its theoretical analysis are provided to verify the effectiveness of the proposed compensator.

Improved Current Source using Full-Bridge Converter Type for Thyristor Valve Test of HVDC System (HVDC 시스템의 SCR 사이리스터 밸브 시험을 위한 Full-Bridge Converter 방식의 개선된 전류원 회로)

  • Jung, Jae-Hun;Cho, Han-Je;Goo, Beob-Jin;Nho, Eui-Cheol;Chung, Yong-Ho;Baek, Seung-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.363-368
    • /
    • 2015
  • This paper deals with an improved current source using full-bridge converter type for thyristor valve test of HVDC system. The conventional high-current and low-voltage source of synthetic test circuit requires additional auxiliary power supply to provide the reverse voltage for the auxiliary thyristor valve during turn-off process. The proposed circuit diagram to provide the reverse voltage is extremely simple because no additional component is required. The reverse voltage can be obtained from the input DC voltage of the high-current and low-voltage power supply. The operation principle and design method of the proposed system are described. Simulation and experimental results in scaled down STC of 200 V, 30 A demonstrate the validity of the proposed scheme.

A Study of Design Single Phase Boost Converter Controller for Compensated Load Current and Duty (부하전류와 듀티를 보상하는 단상 PFC 부스트 컨버터 제어기 설계)

  • Lim, Jae-Uk;Lee, Seung-Tae;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • This paper proposes a new DC link voltage controller for a single-phase power factor correction (PFC) boost converter. The load current of the PFC boost converter affects the capacitor current, whereas the load current changes the output voltage. However, previous works that compensate output current have failed to consider the relationship between load current and duty. Thus, they also fail to maintain a constant output voltage if the load fluctuates under the conditions of a non-rated input voltage. By considering the duty in the load current compensation, the proposed method improves the load transient response regardless of the input voltage. To demonstrate its effectiveness, the proposed method is compared with other control methods by conducting PSM simulations and experiments under a rapidly changing load.

Control of Input Series Output Parallel Connected DC-DC Converters

  • Natarajan, Sirukarumbur Pandurangan;Anandhi, Thangavel Saroja
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.265-270
    • /
    • 2007
  • Equal rating DC-DC converter modules can be connected in series at the input for circuits requiring higher input voltages and in parallel at the output for circuits requiring higher output currents. Since the converter modules may not be practically identical, closed loop control has to ensure that each module equally shares the total input voltage and the load current. A control scheme consisting of a common output voltage loop, individual inner current loops and individual input voltage loops have been designed in this work to achieve input voltage and load current sharing as well as load voltage regulation under supply and load disturbances. The output voltage loop provides the basic reference for the inner current loops, which are also modified by the respective input voltage loops. The average of the converter input voltages, which is dynamically varying, is chosen as the reference for input voltage loops. This choice of reference eliminates interaction among different control loops. Type II compensators and Fuzzy Logic Controllers (FLCs) are designed and compared through MATLAB based simulation and FLC is found to be satisfactory. Hence TMS320F2407A DSP based FLC is implemented and the results are presented which prove the superiority of the FLC developed for this research.

Current Ripple Reduction Method of 3-phase Interleaved Bidirectional DC-DC Converter with the Consideration of Input and Output Voltage Variation (입·출력 전압 변동을 고려한 3상 인터리브드 양방향 DC-DC컨버터의 전류리플 저감 기법)

  • Sun, Daun;Jung, Jae-Hun;Nho, Eui-Cheol;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.427-433
    • /
    • 2016
  • This paper proposes a new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter. Usually, the three-phase interleaved bidirectional DC-DC converter is used for battery charging and discharging to reduce battery current ripple. In V2G application, a PWM AC-DC converter is used to connect the AC power grid and three-phase interleaved bidirectional DC-DC converter for battery charging and discharging. The magnitude of DC link voltage affects the battery current ripple magnitude. Therefore, the magnitude of the battery ripple current is analyzed with variations of battery and DC link voltages. The ripple current magnitude is found to be minimized by controlling the DC link voltage. Simulation and experimental results show the usefulness of the proposed method.

Current Source ZCS PFM DC-DC Converter for Magnetron Power Supply

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.20-28
    • /
    • 2009
  • This paper presents the design of zero current switching ZCS pulse frequency modulation type DC-DC converter for magnetron power supply. A magnetron serving as the microwave source in a microwave oven is driven by a switch mode power supply (SMPS). SMPSs have the advantages of improved efficiency, reduced size and weight, regulation and the ability to operate directly from the converter DC bus. The demands of the load system and the design of the power supply required to produce constant power at 4[kV]. A magnetron power supply requires the ability to limit the load current under short circuit conditions. The current source series resonant converter is a circuit configuration which can achieve this. The main features of the proposed converter are an inherent protection against a short circuit at the output, a high voltage gain and zero current switching over a large range of output power. These characteristics make it a viable choice for the implementation of a high voltage magnetron power supply.

Design of Power Supply for Green PC using Low Voltage High Current LLC Resonant Converter (저전압 대전류 LLC 공진형 컨버터를 이용한 그린 PC용 전원공급장치 설계)

  • Yoo, Young-Do;Kim, In-Dong;Nho, Eui-Cheol;Ryu, Myung-Hyo;Baek, Ju-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.211-219
    • /
    • 2014
  • This paper proposes a low voltage high current LLC resonant converter for Green PC. Green PC is composed of a lot of blade PCs, and it is a centralized system to manage them in computer center. Green PC should require that its power supplies have several characteristics such as low output voltage, high output current, and high power conversion efficiency. Conventional PSFB (Phase Shift Full Bridge) converter is usually used as DC/DC converter for computer power supply because it has high power conversion efficiency thanks to ZVS (Zero Voltage Switching) operation under middle and high load conditions. However, this converter has some problems such as large switching noise and limitation of ZVS operation under light load condition. In order to improve the performance of power supply for Green PC, a new power supply using popular high efficiency LLC resonant converter for low voltage and high current application is proposed in this paper. The proposed power supply has ZVS capability over the entire load range, thus resulting in good efficiency and high switching frequency. Experimental results verify the performance of the proposed power supply for Green PC using 2[kW] (19[V], 105[A]) rated prototype converter.

A New Zero-Voltage Switching Three-Level Converter with Reduced Rectifier Voltage Stress (결합 인덕터를 적용한 고효율 3레벨 컨버터)

  • Kim, Keon-Woo;Han, Jung-Kyu;Moon, Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.406-410
    • /
    • 2019
  • Three-level (3L) DC-DC converters are appropriate for high-input-voltage applications. Although the voltage stress of TL converter switches can be reduced to half of the input voltage, the primary side has a large circulating current, which degrades efficiency. In this study, a dual half-bridge cascaded TL converter is presented to reduce this circulating current and thus decrease the conduction loss of the primary circuit. Moreover, the proposed converter can reduce the voltage stress of rectifier diodes, thereby reducing their conduction loss. Therefore, efficiency can be improved by reducing the conduction loss of the primary circuit and rectifier diodes.