• 제목/요약/키워드: voltage-dip

검색결과 52건 처리시간 0.012초

3상 위상제어 정류기에서 DVR의 응답시간과 허용 가능한 순시저전압의 범위에 대한 연구 (A study on the permissible range of voltage dips and the response time of DVR in 3-phase phase-controlled rectifier)

  • 한무호;권우현;박철우
    • 제어로봇시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.325-333
    • /
    • 2004
  • It is investigated that the relation between the response time of DVR(Dynamic Voltage Restorer) and the possible compensation range of voltage dip by the DVR system which protects the 3-phase phase-controlled rectifier from voltage dip. As a result, the permissible range of voltage dip is presented in the 3-phase phase-controlled rectifier, and it is presented that the range of voltage dip which can be compensated according to the DVR s response time. when the DVR compensates voltage dip, Using the proposed method, the DVR s response time can be determined from the parameters of 3-phase phase-controlled rectifier and the possible compensation range of voltage dip, and it is possible to use the control system which have an appropriate speed. Therefore, the use of excessively fast device can be avoided, and the stability of the overall system is improved. Also the reliance of DVR about the 3-phase phase-controlled rectifier can be verified.

3상 위상제어 정류기를 위한 DVR의 반응시간 최적화 (Response Time Optimization of DVR for 3-Phase Phase-Controlled Rectifier)

  • 박철우;정수경;류지열;이대섭
    • 제어로봇시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.195-201
    • /
    • 2013
  • In this paper, we present optimization technique for the response time of DVR (Dynamic Voltage Restorer) and the possible compensation range of voltage dip by the DVR system. To protect 3-phase phase-controlled rectifier from voltage dip, DVR system needs to have optimum response time as an important design factor. Although the fast response time of DVR ensures wider range of voltage dip, DVR controller has so high cost and poor stability. This paper proposes DVR system with optimum response time required for certain intensity of voltage dips and good stability to support possible compensation range of voltage dip. Proposed technique showed optimum response time and good stability for overall system. We believe that proposed technique is reliable and useful in DVR design.

A Study on the Reliability of DVR in a 3-Phase Phase-Controlled Rectifier

  • Kim, Woo-Hyun;Park, Chul-Woo
    • 조명전기설비학회논문지
    • /
    • 제26권11호
    • /
    • pp.54-61
    • /
    • 2012
  • This study investigated the relationship between the response time of DVR (Dynamic Voltage Restorer) and the possible compensation range for voltage dips by the DVR system which protects the 3-phase phase-controlled rectifier from said dips. As a result, the permissible range of voltage dip is presented in a 3-phase phase-controlled rectifier. When the DVR compensates for voltage dip, the range of voltage dip can be compensated according to the DVR's response time. Using the proposed method, DVR response time can be determined from the parameters of the 3-phase phase-controlled rectifier and the possible compensatory range of voltage dip, while at the same time it is possible to use a control system having an appropriate speed. Therefore, the use of excessively fast equipment can be avoided, improving the stability of the overall system. The reliability of the DVR concerning the 3-phase phase-controlled rectifier can be verified by simulation.

최대 전압 강하에 비례하는 무효전류 공급 루프를 이용한 DFIG 풍력단지의 계층전압제어 (Hierarchical Voltage Regulation of a DFIG-based Wind Power Plant Using a Reactive Current Injection Loop with the Maximum Voltage Dip for a Grid Fault)

  • 박건;김진호;강용철
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1334-1339
    • /
    • 2016
  • In a power grid that has a high wind power penetration, the fast voltage support of a wind power plant (WPP) during the grid fault is required to stabilize the grid voltage. This paper proposes a voltage control scheme of a doubly-fed induction generator (DFIG)-based WPP that can promptly support the voltage of the point of common coupling (PCC) of a WPP during the grid fault. In the proposed scheme, the WPP and DFIG controllers operate in a voltage control mode. The DFIG controller employs two control loops: a maximum voltage dip-dependent reactive current injection loop and a reactive power to voltage loop. The former injects the reactive power in proportion to the maximum voltage dip; the latter injects the reactive power in proportion to the available reactive power capability of a DFIG. The former improves the performance of the conventional voltage control scheme, which uses the latter only, by increasing the reactive power as a function of the maximum voltage dip. The performance of the proposed scheme was investigated for a 100-MW WPP consisting of 20 units of a 5-MW DFIG under various grid fault scenarios using an EMTP-RV simulator. The simulation results indicate that the proposed scheme promptly supports the PCC voltage during the fault under various fault conditions by increasing the reactive current with the maximum voltage dip.

Controlling Zero Sequence Component in DVR for Compensating Unbalanced Voltage Dip of a DFIG

  • Ko, JiHan;Thinh, Quach Ngoc;Kim, SeongHuyn;Kim, Eel-Hwan
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.154-155
    • /
    • 2012
  • The dynamic voltage restorer (DVR) is an effective protection device for wind turbine generator based on doubly-fed induction generator (DFIG) operated under the unbalanced voltage dip conditions. The compensating voltages of DVR depend on the voltage dips and on the influence of the zero sequence components. If the $Y_0/{\Delta}$ step-up transformers are used, there are no zero sequence components on the DFIG side. However, if the $Y_0/Y_0$ step-up transformers are used, the zero sequence components will appear during faults. The zero sequence components result in the high insulation costs and the asymmetric of the terminal voltages. This paper proposes a method for controlling zero sequence components in DVR to protect DFIG under unbalanced voltage dips. Simulation results are presented to verify the effectiveness of the proposed control method.

  • PDF

Rotating Wheel Dip Test에 의한 에폭시 절연재료의 내트래킹성과 열화 특성 (Tracking Resistance and Aging Characteristics of Epoxy Insulating Materials by the Rotating Wheel Dip Test)

  • 조한구
    • 한국전기전자재료학회논문지
    • /
    • 제21권6호
    • /
    • pp.530-537
    • /
    • 2008
  • This paper describes the results of a study on the tracking performance of outdoor insulating materials based on the rotating wheel dip test(RWDT). And, the influence of surface degradation was evaluated through such as measurement of the flashover voltage after and before tracking test, also aspects of surface degradation using scanning electron microscopy. The time to tracking breakdown of treated filled specimen is longer than untreated filled specimen. And, after the RWDT, the surface of specimen by adding untreated filler appeared heavy erosion. It was found that the addition to surface treated filler, the better tracking resistance. In the RWDT, the breakdown specimen is not affected by the dry flashover voltage, despite the fact that the surface degradation of tracking test has different state on each specimen. This suggests that wet flashover voltage play an important role in evaluating of tracking and erosion on the surface degradation in tracking test. And, the flashover voltage of specimen under wet conditions are greatly affected by the salt concentration and degree of degradation by the RWDT Because of hydrophobicity and degree of degradation by the RWDT, the flashover voltage of treated filled specimen is higher than that of untreated filled specimen. Different types of specimen may have different hydrophobicity and their surface state under contaminated conditions may not be the same.

Stability Enhancement of a Hybrid Micro-grid System in Grid Fault Condition

  • Ambia, Mir Nahidul;Al-Durra, Ahmed;Caruana, Cedric;Muyeen, S.M.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.225-231
    • /
    • 2013
  • Low voltage ride through capability augmentation of a hybrid micro-grid system is presented in this paper which reflects enhanced reliability in the system. The control scheme involves parallel connected multiple ac-dc bidirectional converters. When the micro-grid system is subjected to a severe voltage dip by any transient fault single power converter may not be able to provide necessary reactive power to overcome the severe voltage dip. This paper discusses the control strategy of additional power converter connected in parallel with main converter to support extra reactive power to withstand the severe voltage dip. During transient fault, when the terminal voltage crosses 90% of its pre-fault value, additional converter comes into operation. With the help of additional power converter, the micro-grid system withstands the severe voltage fulfilling the grid code requirements. This multiple converter scheme provides the micro-grid system the capability of low voltage ride through which makes the system more reliable and stable.

유도성 부하 네트워크의 기동에 의한 순간전압강하 및 기동전류 감쇄를 위한 제어시스템 (A Control System for Attenuating Voltage-Dip and Inrush Current Caused by Starting of Inductive Load Nnetwork)

  • 김상곤;최인겸;김태곤;서성규
    • 전기전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.109-115
    • /
    • 2012
  • 유도성 부하 네트워크의 기동에 의한 순간전압강하 및 기동전류 감쇄를 위해, TRIAC PWM 모듈과 순차기동시스템으로 구성된 제어시스템을 제안한다. 에어컨 컴프레서와 같은 대용량 유도성 부하의 기동시 발생하는 높은 순간전압강하와 기동전류를 최소화하기 위해 TRIAC PWM 모듈이 개발되었다. 대용량 유도성 부하 네트워크에서 부하의 동시 기동을 방지하는 순차기동시스템을 설계, 제작하였다. 제안된 제어시스템의 시험결과에 따르면, 본 시스템을 적용한 대용량 유도성 부하의 기동에 따른 배전계통의 순간전압강하 및 기동전류가 관련 국제규격을 효과적으로 만족시킬 수 있으며, 유도성 부하들의 동시 기동 문제 또한 효과적으로 해결할 수 있다. 제안된 시스템을 이용하면 최대전력소모량에 근거하여 부과되는 전력비용을 절감하거나, 유도성 부하 네트워크가 연결된 동일 배전 계통의 전력품질 안정화에도 크게 기여할 것으로 기대된다.

이리듐 합성물 기반의 인광 고분자 발광 소자 (Polymer Phosphorescent Light-Emitting Devices Doped with Iridium Complex)

  • 김성진
    • 한국진공학회지
    • /
    • 제18권4호
    • /
    • pp.254-258
    • /
    • 2009
  • 순방향 전압에서 안정적인 전류 흐름을 가지고 낮은 turn-on 전압으로 구동하는 이리듐 합성물 기반의 인광 고분자 발광 다이오드를 제작하였다. Poly(N-vinylcabazole)와 tris(2-phenylpyridine)iridium 재료를 포함하는 유기 발광층은 $10{\mu}m$/s 와 $20{\mu}m$m/s의 저속도 dip-coating으로 만들었다. 제안한 방법으로 형성된 유기 발광 다이오드는 100 cd/$m^2$의 기준 휘도에서 각각 5.8 V와 6.7 V로 구동이 되었지만, 발광층을 스핀코팅으로 제작된 소자는 다소 높은 전압인 9.1 V를 기록하였다. 본 연구는 대면적, 용액 공정 기반의 고효율 특성을 요구하는 유기 발광 소자에서 발광층의 새로운 박막 형성기술로 이용될 수 있다.

저온형 SOFC용 GDC 전해질 두께에 따른 Open Circuit Voltage 향상 (Improvement of Open Circuit Voltage (OCV) depending on Thickness of GDC Electrolyte of LT-SOFCs)

  • 고현준;이종진;현상훈
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.195-198
    • /
    • 2010
  • It has been considered to apply GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) for low-temperature SOFC electrolytes because it has higher ionic conductivity than YSZ at low temperature. However, open circuit voltage with using GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) electrolyte in SOFCs, becomes lower than using YSZ (8 mol% Yttria stabilized Zirconia) electrolyte because GDC has electronic conductivity. In this work, the effect of changing GDC electrolyte thickness on the open circuit voltage has been investigated. Ni-GDC anode-supported unit cells were fabricated as follows. Mixed NiO-GDC powders were pressed and pre-sintered at $1200^{\circ}C$. And then, GDC electrolyte material was dip-coated on the anode and sintered at $1400^{\circ}C$. Finally the LSCF-GDC cathode material was screen-printed on the electrolyte and sintered at $1000^{\circ}C$. Electrolyte thickness was controlled by the number of dip-coating times. Open circuit voltage was measured depending on electrolyte thickness at $650^{\circ}C$ and found that the thicker GDC electrolyte was, the better OCV was.