• 제목/요약/키워드: voltage-controlled oscillator

검색결과 371건 처리시간 0.028초

A Differential Voltage-controlled Oscillator as a Single-balanced Mixer

  • Oh, Nam-Jin
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.12-23
    • /
    • 2021
  • This paper proposes a low power radio frequency receiver front-end where, in a single stage, single-balanced mixer and voltage-controlled oscillator are stacked on top of low noise amplifier and re-use the dc current to reduce the power consumption. In the proposed topology, the voltage-controlled oscillator itself plays the dual role of oscillator and mixer by exploiting a series inductor-capacitor network. Using a 65 nm complementary metal oxide semiconductor technology, the proposed radio frequency front-end is designed and simulated. Oscillating at around 2.4 GHz frequency band, the voltage-controlled oscillator of the proposed radio frequency front-end achieves the phase noise of -72 dBc/Hz, -93 dBc/Hz, and -113 dBc/Hz at 10KHz, 100KHz, and 1 MHz offset frequency, respectively. The simulated voltage conversion gain is about 25 dB. The double-side band noise figure is -14.2 dB, -8.8 dB, and -7.3 dB at 100 KHz, 1 MHz and 10 MHz offset. The radio frequency front-end consumes only 96 ㎼ dc power from a 1-V supply.

바랙터 다이오드를 이용한 X-밴드 전압제어 발진기 (X-band Voltage Controlled Oscillator using Varactor Diode)

  • 박동국;윤나라;최연지;김예지
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.756-761
    • /
    • 2009
  • In this paper, a X band voltage controlled oscillator is proposed. The oscillator uses a transistor as an oscillating element and its oscillating frequencies are controlled by the tuning voltage of varactor diode. Using the circuit simulation tools, the matching circuits between the transistor and varactor diode, its input and output matching circuits, and a feedback circuits are designed. The measured results of the fabricated oscillator show that its oscillation frequencies are from 10.50GHz to 10.88GHz according to the turning voltages of 1V to 18V, its output power levels are about 4.3dBm, and its phase noise is around -43.5dBc/Hz at 100kHz offset frequency of 10.5GHz.

A Current Compensating Scheme for Improving Phase Noise Characteristic in Phase Locked Loop

  • Han, Dae Hyun
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.139-142
    • /
    • 2018
  • This work presents a novel architecture of phase locked loop (PLL) with the current compensating scheme to improve phase noise characteristic. The proposed PLL has two charge pumps (CP), main-CP (MCP) and sub-CP (SCP). The smaller SCP current with same time duration but opposite direction of UP/DN MCP current is injected to the loop filter (LF). It suppresses the voltage fluctuation of LF. The PLL has a novel voltage controlled oscillator (VCO) consisting of a voltage controlled resistor (VCR) and the three-stage ring oscillator with latch type delay cells. The VCR linearly converts voltage into current, and the latch type delay cell has short active on-time of transistors. As a result, it improves phase noise characteristic. The proposed PLL has been fabricated with $0.35{\mu}m$ 3.3 V CMOS process. Measured phase noise at 1 MHz offset is -103 dBc/Hz resulting in 3 dBc/Hz phase noise improvement compared to the conventional PLL.

센서 네트워크를 위한 2.4 GHz 저잡음 커플드 링 발진기 (A 2.4 GHz Low-Noise Coupled Ring Oscillator with Quadrature Output for Sensor Networks)

  • 심재훈
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.121-126
    • /
    • 2019
  • The voltage-controlled oscillator is one of the fundamental building blocks that determine the signal quality and power consumption in RF transceivers for wireless sensor networks. Ring oscillators are attractive owing to their small form factor and multi-phase capability despite the relatively poor phase noise performance in comparison with LC oscillators. The phase noise of a ring oscillator can be improved by using a coupled structure that works at a lower frequency. This paper introduces a 2.4 GHz low-noise ring oscillator that consists of two 3-stage coupled ring oscillators. Each sub-oscillator operates at 800 MHz, and the multi-phase signals are combined to generate a 2.4 GHz quadrature output. The voltage-controlled ring oscillator designed in a 65-nm standard CMOS technology has a tuning range of 800 MHz and exhibits the phase noise of -104 dBc/Hz at 1 MHz offset. The power consumption is 13.3 mW from a 1.2 V supply voltage.

3중구조 VCO를 이용한 Ka Band LNB 용 PLDRO 설계 및 제작 (Design and Implementation of a Phase Locked Dielectric Resonator Oscillator for Ka Band LNB with Triple VCOs)

  • 강동진;김동옥
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2008년도 정보통신설비 학술대회
    • /
    • pp.441-446
    • /
    • 2008
  • In this papers, a PLDRO(Phase Locked Dielectric Resonator Oscillator) is designed and implemented at the oscillator in which fundamental frequency is 18.3 GHz. The proposed PLDRO so as to improve the PLDRO of the general structure is designed to the goal of the minimize of the size and the performance improvement. Three VCO(Voltage controlled Oscillator) and the power combiner improved the output power. A VCDRO(Voltage Controlled Dielectric Resonator Oscillator) is manufactured using a varactor diode to tune oscillating frequency electrically, and its phase is locked to reference frequency by SPD(Sampling Phase Detector). This product is fabricated on Teflon substrate with dielectric constant 2.2 and device is ATF -13786 of Ka-band using. This PLDRO generates an output power of 5.67 dBm at 18.3 GHz and has the characteristics of a phase noise of -80.10 dBc/Hz at 1 kHz offset frequency from carrier, the second harmonic suppression of -33 dBc. The proposed PLDRO can be used in Ka-band satellite applications

  • PDF

Sinusoidal, Pulse, Triangular Oscillator Using Second Generation Current Conveyor

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제8권5호
    • /
    • pp.566-569
    • /
    • 2010
  • This paper describes the sinusoidal, pulse, triangular oscillator using second generation current conveyor. To obtain the sinusoidal waveform the circuit blocks are constructed by using all pass filter and integrator. The pulse and the triangular waveforms are obtained from the output of sinusoidal oscillator. The peak-to-peak voltages of sinusoidal and triangular waveforms can be easily controlled by the dc offset voltage. Also the output frequency of the oscillator can be controlled by varying passive elements. The designed circuit is verified by HSPICE simulation.

Duty Cycle 조정이 가능한 새로운 저전력 시스템 CMOS Voltage-Controlled Oscillator 설계 (New Design of Duty Cycle Controllable CMOS Voltage-Controlled Oscillator for Low Power Systems)

  • 조원;이성철;문규
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.605-606
    • /
    • 2006
  • Voltage Controlled Oscillator(VCO) plays an important role in today's communication systems. Especially, a Clock Generator(CG) in phase-locked loop(PLL) is usually realized by the VCO. This paper proposes a new VCO with a controllable duty cycle buffer, that can be adopted in low-power high-speed communication systems. Delay cell of the VCO is implemented with gilbert cell. Frequency dynamic range of the VCO is in the range of approximately $50MHz{\sim}500MHz$. Parameters with N-well CMOS 0.18-um process with 1.8V supply voltage was used for the simulations.

  • PDF

LTCC기술을 이용한 VCO(Voltage Controlled Oscillator) 개발 (Charateristics of VCO(Voltage Controlled Oscillator) using LTCC Technology)

  • 유찬세;이영신;이우성;곽승범;강남기;박종철
    • 마이크로전자및패키징학회지
    • /
    • 제8권1호
    • /
    • pp.61-64
    • /
    • 2001
  • VCO(Voltage Controlled Oscillator)는 통신용 단말기의 크기, 성능 및 전력 소비를 결정하는 중요한 부품중의 하나이다. 통신용 기기의 크기가 점점 작아지고 있는 추세이기 때문에 VCO도 특성의 저하없이 점점 소형화 되고 있다. VCO 모듈을 개발하기에 앞서 회로에 사용되는 수동소자(L,C,R)들에 대한 연구가 진행되었다. 이 과정에서 작은 면적을 차지하면서도 동일한 특성을 나타낼 수 있는 패턴을 고안하였고 이를 적용하였다. 자체 개발된 수동소자 library를 가지고 2차원 simulation을 시행하였고 이를 바탕으로 3차원 회로를 구성하였다. 3차원 회로 구성시 VCO 전체 특성에 크게 영향을 주는 소자들은 trimming이 가능하도록 surface 쪽으로 배치하였다. 공진기 부분에서는 저손실의 stripline 구조를 적용하여 높은 Q값을 얻을 수 있었다. 이러한 과정을 통해 2.3~2.36 GHz에서 동작하는 적층형 VCO를 개발하였다.

  • PDF

Push-Push Voltage Controlled Dielectric Resonator Oscillator Using a Broadside Coupler

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • 제13권2호
    • /
    • pp.139-143
    • /
    • 2015
  • A push-push voltage controlled dielectric resonator oscillator (VCDRO) with a modified frequency tuning structure using broadside couplers is investigated. The push-push VCDRO designed at 16 GHz is manufactured using a low temperature co-fired ceramic (LTCC) technology to reduce the circuit size. The frequency tuning structure using a broadside coupler is embedded in a layer of the A6 substrate by using the LTCC process. Experimental results show that the fundamental and third harmonics are suppressed above 15 dBc and 30 dBc, respectively, and the phase noise of push-push VCDRO is -97.5 dBc/Hz at an offset frequency of 100 kHz from the carrier. The proposed frequency tuning structure has a tuning range of 4.46 MHz over a control voltage of 1-11 V. This push-push VCDRO has a miniature size of 15 mm×15 mm. The proposed design and fabrication techniques for a push-push oscillator seem to be applicable in many space and commercial VCDRO products.

채널 폭 변화에 따른 전압-제어 발진기의 신뢰성 특성 (Reliability Characteristics of Voltage-Controlled Oscillator with Channel Width Variation)

  • 최진호;임인택
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.717-718
    • /
    • 2013
  • CMOS로 구성된 전압-제어 발진기의 채널 폭과 길이가 변화하면, 입력 전압에 따른 출력 주파수가 변화할 것이다. 본 논문에서는 FLL(Frequency Locked Loop) 회로의 구성 요소로 사용되는 전압-제어 발진기의 채널 폭 변화에 따른 전기적인 특성 변화를 시뮬레이션을 통하여 살펴보고자 한다. 그리고 변화하는 채널 폭에 따른 전압-제어 발진기의 신뢰성 특성을 향상하기 위한 방안을 살펴보고자 한다.

  • PDF