• Title/Summary/Keyword: voltage standard

Search Result 977, Processing Time 0.031 seconds

Josephson Junction Array for Voltage Metrology: Microwave Enhancement by Coupled Self-Generations in Series Array (전압 측정표준용 조셉슨 접합 어레이: 직렬 어레이에서 상호 결합된 자체발진의 마이크로파 증진)

  • Kim K.-T.;Kim M.-S.;Chong Y.-W.
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • Coupling of non-linear oscillators have long been an interesting problem for physicists. The coupling phenomena have been frequently observed in Josephson junction series array, which have been used for Josephson voltage standard. Interestingly pronounced self-generation effect has been found during recent development of Josephson arrays for programmable Josephson voltage standard. But the coupling effect between the self-generations is not fully understood yet. We present harmonically approximated analytical solutions for coupled self-generations in the Josephson arrays, i.e., Superconductor-Insulator-Normal metal-Insulator-Superconductor (SINIS) array, externally shunted Superconductor-Insulator-Supercondctor (es-SIS) array, Superconductor-Normal metal-Superconductor (SNS) array. We find that the coupling between the self-generated Josephson oscillations through microwave transmission line plays critical role in microwave property of the Josephson array.

  • PDF

Development of an Input Impedance Evaluation of the AC-DC Transfer Standard for Low Level AC Voltage Standard (교류 저전압 표준용 교류-직류 변환기의 입력임피던스 평가기술 개발)

  • Kwon, Sung-Won;Jung, Jae-Kap;Lee, Sang-Hwa;Kim, Myung-Soo;Kim, Han-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.229-234
    • /
    • 2008
  • An AC-DC transfer standard(TS) is used for the AC voltage standard in the range of 2 mV to 1000 V below 1 MHz. Micro-potentiometer(${\mu}Pot$) is used to evaluate the ac-dc transfer difference(ADD) of the TS below 200 mV range. The ADD of the TS were changed by the loading effect caused from the input impedance change of the TS depend on frequency. An input impedance evaluation technique of the TS using ${\mu}Pot$ has been developed.

A High Voltage NMOSFET Fabricated by using a Standard CMOS Logic Process as a Pixel-driving Transistor for the OLED on the Silicon Substrate

  • Lee, Cheon-An;Jin, Sung-Hun;Kwon, Hyuck-In;Cho, Il-Whan;Kong, Ji-Hye;Lee, Chang-Ju;Lee, Myung-Won;Kyung, Jae-Woo;Lee, Jong-Duk;Park, Byung-Gook
    • Journal of Information Display
    • /
    • v.5 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • A high voltage NMOSFET is proposed to drive top emission organic light emitting device (OLED) used in the organic electroluminescent (EL) display on the single crystal silicon substrate. The high voltage NMOSFET can be fabricated by utilizing a simple layout technique with a standard CMOS logic process. It is clearly shown that the maximum supply voltage ($V_{DD}$) required for the pixel-driving transistor could reach 45 V through analytic and experimental methods. The high voltage NMOSFET was fabricated by using a standard 1.5 ${\mu}m$, 5 V CMOS logic process. From the measurements, we confirmed that the high voltage NMOSFET could sustain the excellent saturation characteristic up to 50 V without breakdown phenomena.

Simulation of RSFQ D/A converter to use as a voltage standard (전압표준용 RSFQ DAC의 전산모사 실험)

  • Chu, Hyung-Gon;Kang, Joon-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.160-164
    • /
    • 2000
  • Digital to analog converters based on the Josephson effect are promising for voltage standard, because they produce voltage steps with high precision and good stability. In this paper, we made a simulation study on RSFQ D/A converter. RSFQ D/A converter was composed of NDRO cells, T(toggle) flip-flops, D flip-flops, Splitters and Confluence Buffers. Confluence Buffer was used to reset the D/A converter. We also obtained operating margins of the important circuit values by simulational experiments.

  • PDF

Development of National Lightning Impulse Voltage Standard Measuring Technology (뇌충격전압 국가표준 측정기술 개발)

  • Kim, M.K.;Jeong, J.Y.;Kim, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1744-1746
    • /
    • 2003
  • This paper represents the development of national standard (NS) for lightning impulse (LI) voltage measuring system rated 400 kV. A traceability of the NS to the international standard could be achieved by the intercomparison test with Helsinki University. According to the IEC 60060-2, a measurement uncertainty was assessed. As a result of the tests, a measurement uncertainty and step response characteristics were satisfied with the requisite for NS.

  • PDF

Intercomparison Test of 500 kV Standard Measuring System for SI Voltage (500 kV 표준급 개폐충격전압 측정시스템의 비교시험)

  • Kim, M.K.;Huh, D.H.;Kim, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1492-1493
    • /
    • 2007
  • This paper represents the development of national standard(NS) for switching impulse(SI) voltage measuring system rated 500 kV. A traceability of the NS to the international standard could be achieved by the intercomparison test with PTB(Physikalisch-Technische Bundesansalt). According to the IEC 60060-2, a measurement uncertainty was assessed. As a result of the tests, the measurement uncertainty and the characteristics of step response were satisfied with the requisite for NS.

  • PDF

A Study on the Step Response Characteristics in Shielded Resistor Divider for Switching Impulse Voltage (개폐 충격전압 측정용 쉴드 저항분압기의 직각파 특성에 관한 연구)

  • Kim, Ik-Su;Lee, Hyeong-Ho;Jo, Jeong-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.777-784
    • /
    • 1999
  • Since the ultra-high voltage power apparatus are recommended to withstand switching surge generated from the electric power system, the switching impulse voltage is generally used to verify this requirement at the testing laboratories. Recently, the international standard(IEC 60060-2) related to the high voltage measurement techniques is revised requiring a traceability of measuring system for high voltage measurements. In this paper, a reference divider for switching impulse voltage is developed satisfying the revised. IEC standard and the possibility of applications has been investigated. Therefore, the characteristics of the high and low voltage side resistor and the shielding ring have been analyzed including the step response characteristics of the prototype divider. Throughout various efforts, it is confirmed that our measuring device has shown compatible characteristics as a reference divider.

  • PDF

Compensation of Voltage Variation Using Active Power-Dependent Reactive Power Control with Multiple VRE Systems Connected in a Distribution Line (배전 선로에 연계된 다수대의 변동성 재생에너지 발전 시스템의 출력 유효전력 변동에 따른 무효전력 제어를 이용한 전압 변동 보상)

  • Lee, Sang-Hoon;Kim, Soo-Bin;Song, Seung-Ho
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.47-56
    • /
    • 2018
  • This paper introduces an active power dependent standard characteristic curve, Q(P) to compensate for voltage variations due to the output of distributed generation. This paper presents an efficient control method of grid-connected inverters by comparing and analyzing voltage variation magnitude and line loss according to the compensation method. Voltage variations are caused not only by active power, but also by the change of reactive power flowing in the line. In particular, the system is in a relatively remote place in a coastal area compared with existing power plants, so it is relatively weak and may not be suitable for voltage control. So, since it is very important to keep the voltage below the normal voltage limit within the specified inverter capacity and to minimize line loss due to the reactive power. we describe the active power dependent standard characteristic curve, Q(P) method and verify the magnitude of voltage variation by simulation. Finally, the characteristics of each control method and line loss are compared and analyzed.

A Design of Digital Instrumentation Amplifier converting standard sensor output signals into 5V voltage-output (표준 센서 출력신호를 5V 전압-출력을 변환하는 디지털 계측 증폭기 설계)

  • Cha, Hyeong-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.41-47
    • /
    • 2011
  • A novel digital instrumentation amplifier(DIA) converting universal signal inputs into 5V voltage-output for industry standard sensor signal processing was designed. The circuit consists of a commercial instrumentation amplifier, seven analog switches, two voltage references of 1.0V and -10.0V, and four resistors. The converting principle is the circuit reconstruction by switches for resistor values and reference voltages according to input signals. The simulation result shows that the DIA has a good output voltage characteristics of 0~5V for the input voltage of 0V~5V, 1V~5V, -10V~+10V, and 4mA~20mA. The nonlinearity error was less than 0.1% for the four type signal inputs.