A High Voltage NMOSFET Fabricated by using a Standard CMOS Logic Process as a Pixel-driving Transistor for the OLED on the Silicon Substrate

  • Lee, Cheon-An (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul National University) ;
  • Jin, Sung-Hun (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul National University) ;
  • Kwon, Hyuck-In (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul National University) ;
  • Cho, Il-Whan (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul National University) ;
  • Kong, Ji-Hye (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul National University) ;
  • Lee, Chang-Ju (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul National University) ;
  • Lee, Myung-Won (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul National University) ;
  • Kyung, Jae-Woo (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul National University) ;
  • Lee, Jong-Duk (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul National University) ;
  • Park, Byung-Gook (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul National University)
  • Published : 2004.03.24

Abstract

A high voltage NMOSFET is proposed to drive top emission organic light emitting device (OLED) used in the organic electroluminescent (EL) display on the single crystal silicon substrate. The high voltage NMOSFET can be fabricated by utilizing a simple layout technique with a standard CMOS logic process. It is clearly shown that the maximum supply voltage ($V_{DD}$) required for the pixel-driving transistor could reach 45 V through analytic and experimental methods. The high voltage NMOSFET was fabricated by using a standard 1.5 ${\mu}m$, 5 V CMOS logic process. From the measurements, we confirmed that the high voltage NMOSFET could sustain the excellent saturation characteristic up to 50 V without breakdown phenomena.

Keywords

References

  1. O. Prache, Displays 22, 49 (2001) https://doi.org/10.1016/S0141-9382(00)00061-5
  2. W. E. Howard and O. F. Prache, IBM J. RES. & DEV. 45, 115 (2001) https://doi.org/10.1147/rd.451.0115
  3. J. L. Sanford and E. S. Schlig, in Tech. Dig. of SID (2001), p. 376
  4. G. Bodammer, A. Buckley, D. Burns, C. Giebeler, J. Gourlay, A. Graham, M. Newsam, R. Monteith, D. Nicol, P. Parmiter, D. Steven, I. Underwood, C. Wilkinson, S. Whitelegg, R. Woodburn, and J. Wright, in Tech. Dig. of SID (2003), p. 742
  5. C. A. Lee, D. S. Woo, H. I. Kwon, Y. J. Yoon, J. D. Lee, and B. -G. Park, Journal of Information Display 3, 1 (2002)
  6. S. C. Tan and X. W. Sun, in Tech. Dig. of SID (2002), p. 980
  7. Y. S. Na and O. K. Kwon, Journal of Information Display 3, 35 (2002) https://doi.org/10.1080/15980316.2002.9651899
  8. Y. He, R. Hattori, and J. Kanicki, IEEE Electron Device Letters 21, 590 (2000) https://doi.org/10.1109/55.887475
  9. P. Servati, S. Prakash, A. Nathan, and C. Py, J. Vac. Sci. Technol. A 20, 1374 (2002)
  10. D. Pribat and F. Plais, Thin Solid Films 383, 25 (2001) https://doi.org/10.1016/S0040-6090(00)01645-X
  11. J. M. Rabaey, Digital Integrated Circuits - A Design Perspective (Prentice-Hall International, Inc., New Jersey, 1996), p. 46
  12. A. S. Sedra and K. C. Smith, Microelectronic Circuits (Oxford University Press, Oxford, 1998), p. 369
  13. D. A. Neamen, Semiconductor Physics & Devices: Basic Principles (Irwin, Chicago, 1997), p. 309
  14. S. Kho, D. Cho, and D. Jung, in Proc. $2^{nd}$ IMID (2002), p. 714
  15. G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, and N. Peyghambarian, Appl. Phys. Lett. 71, 1762 (1997) https://doi.org/10.1063/1.119392
  16. Electrical parameters of ISRC (Inter-university Semiconductor Research Center) 1.5 $\mu$m standard process(http://isrc.snu.ac.kr/progress03.htm)
  17. T. Dobbertin, M. Kroeger, D. Heithecker, D. Schneider, D. Metzdorf, H. Neuner, E. Becker, H. -H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 82, 284 (2003) https://doi.org/10.1063/1.1535743
  18. X. Zhou, M. Pfeiffer, J. S. Huang, J. Blochwitz-Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maennig, and K. Leo, Appl. Phys. Lett. 81, 922 (2002) https://doi.org/10.1063/1.1496502
  19. A. Yamamori, S. Hayashi, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett. 78, 3343 (2001) https://doi.org/10.1063/1.1359485
  20. J. C. Mitros, C. Tsai, H. Shichijo, K. Kunz, A. Morton, D. Goodpaster, D. Mosher, and T. R. Efland, IEEE Trans. Electron Devices, 48, 1751 (2001) https://doi.org/10.1109/16.936703
  21. J. D. Lee, J. H. Nam, H. I. Kwon, and B. G. Park, J. Korean Phys. Soc. 40, 592 (2002) https://doi.org/10.3938/jkps.40.592