• Title/Summary/Keyword: voltage standard

Search Result 977, Processing Time 0.023 seconds

The gate delay time and the design of VCO using variable MOS capacitance

  • Ryeo, Ji-Hwan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.99-102
    • /
    • 2005
  • In the paper, a proposed VCO based on bondwire inductances and nMOS varactors was implemented in a standard $0.25\;{\mu}m$ CMOS process. Using the new drain current model and a propagation delay time model equations, the operation speed of CMOS gate will predict the dependence on the load capacitance and the depth of oxide, threshold voltage, the supply voltage, the channel length. This paper describes the result of simulation which calculated a gate propagation delay time by using new drain current model and a propagation delay time model. At the result, When the reverse bias voltage on the substrate changes from 0 voltage to 3 voltage, the propagation delay time is appeared the delay from 0.8 nsec to 1 nsec. When the reverse voltage is biased on the substrate, for reducing the speed delay time, a supply voltage has to reduce. The $g_m$ value of MOSFET is calculated by using new drain current model.

  • PDF

Development of Three Phase 10kW Voltage Sag Compensator (SEMI F47을 만족하는 10kW급 3상 전압 새그 보상기 개발)

  • Chae, Seung-Woo;Cho, Hyun-Sik;Lee, Il-Yong;Kong, Se-Il;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.198-204
    • /
    • 2012
  • 3-Phase voltage sag compensator protects a critical load from grid sags. The paper presents an algorithm and design of 3-phase voltage compensator. Compensator algorithm consists of a 3-phase voltage sag detection, thyrister commutation method and inverter output voltage control. The compensator satisfies SEMI F47 standard and 10kW 3-phase voltage sag compensator prototype is assembled. Validity of the proposed compensator is verified by simulation and experiment.

Investigation of the Estimation of Time-Varying Voltage Sags Considering the Short Circuit Contributions of Rotating Machines (회전기의 기여에 의한 시변성의 순간전압강하 예측에 관한 연구)

  • Yun Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.315-322
    • /
    • 2005
  • In this article, 1 would like to explore the estimation method of time-varying voltage sags in large industrial systems considering the short circuit contributions of rotating machines. For the power distribution system of KEPCO(Korea Electric Power Corporation), the magnitude of initial symmetrical short circuit current is generally not changed. However, in industrial systems which contain a number of rotating machines, the magnitude of voltage sag is generally changed from the initial to the clearing time of a fault due to the decreasing contribution of rotating machines for a fault current. The time-varying characteristics of voltage sags can be calculated using a short circuit analysis that is considered the time-varying fault currents. For this, the prediction formulations of time-varying voltage sags are proposed using a foreign standard. The proposed method contains the consideration of generator and motor effects. For the test of proposed formulations, a simple system of industrial consumer is used for the comparison conventional and proposed estimation method of voltage sag characteristics.

Modified Low-Votlage CMOS Bandgap Voltage Reference with CTAT Compensation (개선된 CTAT 보상을 가지는 저전압 CMOS Bandgap Voltage Reference)

  • Kim, Jae-Bung;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.753-756
    • /
    • 2012
  • In this paper, a modified low-votlage CMOS bandgap voltage reference with CTAT compensation is presented. The proposed structure doesn't use PTAT current. The proposed structure is more simple than the existing structure and doesn't use the eighteen BJT. The modified low-votlage CMOS bandgap voltage reference with CTAT compensation has been successfully verified in a standard 0.18um CMOS process. The simulation results have confirmed that, with the minimum supply voltage of 1.25V, the output reference voltage at 549mV has a temperature coefficient of 12$ppm/^{\circ}C$ from $0^{\circ}C$ to $100^{\circ}C$.

Compensation of the Secondary Voltage of a Three Winding Coupling Capacitor Voltage Transformer (3권선 CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Kim, Yeon-Hee;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.938-943
    • /
    • 2008
  • Coupling capacitor voltage transformers(CCVTs) have been used in extra or ultra high voltage systems to obtain the standard low voltage signal for protection and measurement. For fast suppression of the phenomenon of ferroresonance, three winding CCVTs are used instead of two winding CCVTs. A tuning reactor is connected between a capacitor voltage divider and a voltage transformer to reduce the phase angle difference between the primary and secondary voltages in the steady state. Slight distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has significant errors due to the transient components such as dc offset component and/or high frequency components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of a three winding CCVT in the time domain. With the values of the measured secondary voltage of the three winding CCVT, the secondary, tertiary and primary currents and voltages are estimated; then the voltages across the capacitor and the tuning reactor are calculated and then added to the measured voltage. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the three winding CCVT irrespective of the fault distance, the fault impedance and the fault inception angle as well as in the steady state.

Quantitative Evaluation of the Impact of Low-Voltage Loads Due to the Successive Voltage Sags (연속적인 순간전압강하에 의한 저압 부하의 정량적 영향 평가)

  • Moon Jong-Fil;Kim Jae-Chul;Yun Sang-Yun;Kang Bong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.12
    • /
    • pp.678-684
    • /
    • 2004
  • Automatic reclosing is a typical protection method in power distribution systems for clearing the temporary faults. However, it has a fatal weakness in regards to voltage sags because it produces successive voltage sags. In this paper, we explored successive impact of voltage sag due to the automatic reclosing of power distribution systems. The actual tests of low voltage loads were accomplished for obtaining the susceptibility of voltage sags. The final results of the test yielded power acceptability curves of voltage sag, and the curves were transformed the 3-dimensional CBEMA(Computer Business Equipment Manufacturer Association) format. For the quantitative evaluation of the impact of successive voltage sags, an assessment formulation using the voltage sag contour was proposed. The proposed formulation was tested by using the voltage sag contour data of IEEE standard and the results of the test. Through the case studies, we verified that the proposed method can be effectively used to evaluate the actual impact of successive voltage sans.

0.35㎛ CMOS Low-Voltage Current/Voltage Reference Circuits with Curvature Compensation (곡률보상 기능을 갖는 0.35㎛ CMOS 저전압 기준전류/전압 발생회로)

  • Park, Eun-Young;Choi, Beom-Kwan;Yang, Hee-Jun;Yoon, Eun-Jung;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.527-530
    • /
    • 2016
  • This paper presents curvature-compensated reference circuits operating under low-voltage condition and achieving low-power consumption with $0.35-{\mu}m$ standard CMOS process. The proposed circuit can operate under less than 1-V supply voltage by using MOS transistors operating in weak-inversion region. The simulation results shows a low temperature coefficient by using the proposed curvature compensation technique. It generates a graph-shape temperature characteristic that looks like a sine curve, not a bell-shape characteristic presented in other published BGRs without curvature compensation. The proposed circuits operate with 0.9-V supply voltage. First, the voltage reference circuit consumes 176nW power and the temperature coefficient is $26.4ppm/^{\circ}C$. The current reference circuit is designed to operate with 194.3nW power consumption and $13.3ppm/^{\circ}C$ temperature coefficient.

  • PDF

Performance Evaluations of the Lightning Impulse Voltage Measuring System by Intercomparative Test - in case of full lightning impulse voltage - (뇌충격 측정시스템의 비교시험에 의한 성능평가 - 전파 뇌충격전압 인가시 -)

  • Kim, Ik-Soo;Kim, Young-Bae;Lee, Hyeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1368-1370
    • /
    • 1995
  • Lightning impulse voltage is essential to evaluate the insulation performance of electric power apparatus. Recently international standard(IEC-60) on high voltage measurement techniques are being revised. In the draft of this standard, a new calibration method is introduced and the accuracy of most industrial measuring systems is maintained by means of comparison test against the reference measuring systems. Intercomparison tests of dividers for lightning impulse measurement were carried out by KERI. The shielded resisitive divider with 700kV rating developed by KERI were done comparison test with PTB divider with 300kV rating which have the similar charateristics as that were circulated among the laboratories. This paper reports on the comparison test results with full lightning impulse voltages from 126kV to 240kV. It is demonstrated that KERI are capable of realizing the idea in the revision of the IEC standand, that is, to establish traceability.

  • PDF

Dielectric Strength of $SF_6/CF_4$ Mixture Under Standard Lightning Impulse Voltages in Non-Uniform Field (불평등 전계에서 표준 뇌 임펄스 전압의 $SF_6/CF_4$ 혼합 가스의 절연 내력)

  • Huh, Chang-Su;Sung, Heo-Gyung;Park, Shin-Woo;Hwang, Cheong-Ho;Kim, Nam-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.165-166
    • /
    • 2007
  • In these days $SF_6$ mixtures and alternative gas have been studied because of global warming and liquefying at low temperature and high pressure. At present work the breakdown characteristics of $SF_6/CF_4$ mixture in non-uniform field was performed. The experiments were carried out under positive and negative standard lightning impulse (SLT) voltages. The point-plane electrode was used with 3 mm gap distance in the test chamber. The $SF_6/CF_4$ mixture which contain 20% of $SF_6$ was compared with pure $SF_6$ and $CF_4$ gas. Experimental gas pressure ranged from 0.1 to 0.4 MPa. The breakdown voltage under negative SLI is higher than the breakdown voltage under positive voltage. And the breakdown voltage of $SF_6$ 20%, $CF_4$ 80% mixture is similar to that of pure $SF_6$.

  • PDF