• Title/Summary/Keyword: voltage spike

Search Result 72, Processing Time 0.03 seconds

Wide Frequency Current Source Inverter (광역 주파수 전류원형 인버터)

  • 전성즙;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.927-935
    • /
    • 1994
  • Detailed analysis of the commutation circuit of the proposed wide-frequency current source inverter is given. In this inverter a spike-limit circuit and a precommutation circuit are used. The spike-limit circuit is intended to limit spike voltage which is arising during commutation time in a current source inverter, and the precommutation circuit to reuse the energy which flows from main inverter to spike-limit circuit during commutation time to aid commutation. Thus voltage stress of main thyristor is minimized. Since this inverter can be made up of thyristors for phase control, it has some advantage in high voltage and high power application.

Design of Snubber for the AVR to supply Excitor (여자기 공급용 AVR의 Snubber 설계)

  • Oh, Sang-Rok;Lee, Cheol-Seung;Ryu, Ho-Sun;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.313-315
    • /
    • 1994
  • In this paper, it is consider spike voltage that is generated by ignoring the recovery time of switching device, turn on and turn off time. In the same principle, this spike voltage will be applicable to diode recovery time. The spike voltage causes to break down insulation of input transformer. So, we will show how to remove spike voltage by optimizing value of R and C and using switching diode which have fast recovery time.

  • PDF

Effects of switching power supply on input transformer (스위칭 전원장치가 입력변압기에 미치는 영향)

  • Oh, Sang-Rok;Kim, Byung-Kweon;Seong, Se-Jin;Lee, Heung-Ho;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.815-817
    • /
    • 1993
  • In this paper, it is considered spike voltage that is generated by ignoring the recovery time of switching device, turn on and turn off time. In the same principle, this spike voltage will be applicable to diode recovery time. The spike voltage causes to break down insulation of input transformer. So, we will show how to remove spike voltage by optimizing value of R and C and using switching diode which have fast recovery time.

  • PDF

Soft Switching Control Method for Photovoltaic AC Module Flyback Inverter using Synchronous Rectifier (동기 정류기를 이용한 태양광 모듈용 플라이백 인버터 소프트 스위칭 제어 기법)

  • Jang, Jin-Woo;Kim, Young-Ho;Choi, Bong-Yeon;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.312-321
    • /
    • 2013
  • In this paper, high efficiency control method for flyback inverter with synchronous rectifier(SR) based on photovoltaic AC modules is proposed. In this control method, the operation of SR is classified according to the voltage spike across main switch SP. When the voltage spike across SP is lower than the rating voltage of SP, the operation of active clamp circuit is interrupted for reducing the switching loss of auxiliary switch. In this time, the SR is operated for soft-switching of SP. When the voltage spike across Sp is higher than the rating voltage of SP, the operation of active circuit is activated for reducing the voltage spike. The SR is operated for reducing the conduction loss of secondary output diode. Thus, a switching loss of the main switch can be reduced in low power region, and weighted-efficiency can be improved. A theoretical analysis and the design principle of the proposed method are provided. And validity is confirmed through simulation and experimental results.

A Study of Inverter Optimization Design and Minimization Conducted EMI Noise by Customizing IPM (주문형 IPM을 통한 Inverter 최적화 설계 및 Conducted EMI 노이즈 저감에 관한 연구)

  • Cho Su Eog;Choi Cheol;Park Han Woong;Kim Cheol Woo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.542-545
    • /
    • 2002
  • This paper deals with the optimization inverter design and minimization Conduced EMI noise by customizing IPM(Intelligent Power Module). Generally, In case of IPM, we realized that the trade-off relation between switching loss and spike voltage. Higher gate resistor causes tile lower spike voltage and the higher turn-off switching loss. But we know that the life cycle of inverter and the susceptibility of noise, so we optimized the gate resistor. Proposed method is that optimized the gate resistor suitable for the inverter and motor. The simulation and experimental results show that the spike voltage and Conduced EMI noise can be reduced without the additional circuit.

  • PDF

Protecting electronic equipment against lightning surge (정밀기기의 낙뢰서지 대책에 관한 연구)

  • 임순재;이주광;이완규;최만용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.358-362
    • /
    • 1995
  • Precision electronic equipments are composed of sophisticated microcircuits that are extremely vulnerable to lightning-caused voltage spike. This transient voltage spike may cause upset, latent failure or interference on electronic equipments. In order to develop efficient lightning protection measures on AC power lines for a road traffic controller, experimental surge immunity tests were conducted according to IEC standard 801-5. The combination of gas tube arrester and metal-oxide varistor was installed at the input of AC power lines and the silicon avalanche suppressor installed at the output of DC power supply as lightning protection measures.

  • PDF

The Triple Current Source Inverter System for Induction Motor Drive Using a One Chip Microcomputer (One Chip Microcomputer를 이용한 유도전동기 구동용 3동 전류형 인버어터시스템)

  • Chung, Yon-Tack;Jang, Seong-Chil;Hwang, Lak-Hoon;Lee, Hoon-Goo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.162-172
    • /
    • 1991
  • In proportion to the capacity enlargement of the induction motor system controlled by current source inverter, the capacitance of the commutating capacitor is enlarged and then the spike value of output voltage is increased at the moment of charge and discharge. Moreover, the output currnet includes a number of harmonic components. Such voltage spike and harmonics generate the torque ripple and lead to bad effects on the performance of the induction motor. In this study, all the harmonics excluding 17th and 19th harmonics were mostly elimunated by adopting 18-phase Triple High Frequency Current Source Inverter(HFCSI), and the spike component of output voltage was reduced by adding the Voltage Clamping Circuit(VCC). As a result, the torque ripple and the commutation loss were reduced and the performance of the system was improved. Experiments for speed control were carried out in the tripple current source inverter system for induction motor drive. Overall system was controlled by ONE CHIP MICROCOMPUTER(INTEL 8751). Control circuits were simplified and good experimental results in the constant V/F control were obtained due to the flexibility of the microcomputer.

  • PDF

EMI Prediction and Reduction of Zero-Crossing Noise in Totem-Pole Bridgeless PFC Converters

  • Zhang, Baihua;Lin, Qiang;Imaoka, Jun;Shoyama, Masahito;Tomioka, Satoshi;Takegami, Eiji
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.278-287
    • /
    • 2019
  • In this study, a zero-crossing spike current issue in a totem-pole bridgeless power factor correction (PFC) converter is comprehensively investigated for the first time. Spike current occurs when input voltage crosses zero, becomes a noise source, and causes severe common mode emission issues. A generation mechanism for electromagnetic interference (EMI) is presented to investigate the EMI problem caused by zero-crossing issue, and a noise spectrum due to this issue is predicted by a theoretical analysis based on the Fourier coefficient of an approximate spike current waveform. Furthermore, a noise reduction method is proposed and then improved to reduce the spike current. Experimental measurements are implemented on a GaN-based totem-pole bridgeless PFC converter, and the spike current can be effectively suppressed through the proposed method. Furthermore, the noise spectrums measured without and with the reduced zero-crossing spike current are compared. Experimental results validate the analysis of the noise spectrum caused by the zero-crossing spike current issue.

A study on the multi-inverter drive that is including the voltage clamping circuit (Voltage Clamping 회로를 첨가한 다중 인버어터의 구동에 관한 연구)

  • Jung, Yeon-Tack;Han, Kyung-Hee;Whang, Lak-Hoon;Kim, Ki-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.124-126
    • /
    • 1988
  • The induction motor is constantly operated by general source, thus its speed control is employed an inverter system which can convert DC into AC. The CSI(Current Source Inverter) which have a commutation capacitor in its circuit is liable to cause a voltage spike that it is due to charge and discharge of commutation capacitor. And six phases inverter makes a number of harmonics. These have a effect upon the induction motor badly. This paper aims to suggest a way to reduce such adverse effects by maximally cutting the voltage spike as well as by eliminating a number of harmonics through the operation of Multi-HFCSI.

  • PDF

Design of a 2KW Soft-Switching ZVT Power Factor Correction Converter with Active Snubbers (능동 스너버를 갖는 2KW 소프트 스위칭 ZVT 역률 보정 컨버터 설계)

  • Park, Gyeong-Su;Kim, Yun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.9
    • /
    • pp.473-478
    • /
    • 2001
  • In this paper a soft switching ZVT(Zero Voltage Transition) power factor converter using active snubbers is designed to improve efficiency and reduce voltage spike and parasitic ringing. The main switch achieves ZVT and the auxiliary switch operates with ZCS. A 2KW soft switching ZVT converter is designed with switching frequency 100kHz, output voltage 400VDC. Then the designed system is realized and experimental results show that the measured efficiency and power factor are over 97.45% and 0.997 respectively with an input current THD less than 3%.

  • PDF