• Title/Summary/Keyword: voltage sag compensation

Search Result 78, Processing Time 0.028 seconds

The Inverter Control Method Using The Voltage Sag Compensation algorithm (순간전압강하 보상 알고리즘을 이용한 인버터 제어에 관한 연구)

  • Yun, Hong-Min;Bae, Jin-Yong;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.62-67
    • /
    • 2012
  • In this paper general purpose voltage source inverter drives are equipped with an under-voltage protection mechanism, causing the system to shut down within a few milliseconds after a power interruption in the main input sources. When a power interruption occurs finish, if the system is a large inertia restarting the load a long time is required. This paper suggests modifications in the control algorithm in order to improve the sag ride-through performance of ac inverter. The new proposed strategy recommends maintaining the DC-link voltage constant at the nominal value during a sag control algorithm, experimental results are presented.

Current Limiting and Voltage Sag Compensation Characteristics of Flux-Lock Type SFCL Using a Transformer Winding (변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 및 전압강하 보상 특성)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1000-1003
    • /
    • 2012
  • The superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes and plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. The current limiting and the voltage sag compensating characteristics of a SFCL using a transformer winding were analyzed. Through the analysis on the short-circuit tests results considering the winding direction of two coils, the SFCL designed with the additive polarity winding has shown the higher limited fault current than the SFCL designed with the subtractive polarity winding. It could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Dynamic Voltage Restorer(DVR) with a Z-Source AC Converter Topology (Z-소스 교류 컨버터 토폴로지의 동적 전압 보상기)

  • Lim, Young-Cheol;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.36-43
    • /
    • 2010
  • This paper proposes a new type of voltage sag-swell compensator based on a Z-source AC-AC converter. The proposed topology employs a pulse width modulation (PWM) Z-source AC-AC converter along with a injection transformer. A safe commutation strategy is used to eliminate voltage spikes on switches without snubber circuit. During a voltage sag or swell, the proposed system controls the adding or missing voltage and maintains the rated voltage of sinusoidal waveform at the terminals of the critical loads. The proposed system is able to compensate 20[%] voltage swell and is also able to compensate 60[%] voltage sag. In order to control and detect the voltage sag and swell, the peak voltage detection method is applied. Also, the operating principles of the proposed system are described, and a circuit analysis is provided. Finally, PSIM simulation and experimental results are presented to verify the proposed concept and theoretical analysis.

Stochastic Estimation of Voltage Sags Based on Voltage Monitoring (전압 모니터링에 기반한 순간전압강하 확률적 추계 방법)

  • Son, Jeongdae;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1271-1277
    • /
    • 2018
  • This paper deals with a voltage sag assessment based on a voltage monitoring program. The voltage sag performance at a specific site can be evaluated by analyzing voltage monitoring data recorded for a long time period. Although an assessment based on voltage monitoring is an effective way to understand voltage sag performance at a measurement site, the statistical confidence of voltage sag frequency estimation heavily depends on the length of monitoring period and the number of recorded events. Short monitoring period and insufficient recorded data can not provide a reliable assessment result. This paper proposes a compensation assessment method by combining a computer simulation approach for in case that monitoring period and data are not enough for a valid assessment.

Boost Type Inverter System for Compensation of Instantaneous Voltage Sag (입력전압의 순시전압강하 보상을 위한 승압형 인버터 시스템)

  • Lee, Seung-Yong;Seo, Young-Min;Koo, Do-Youn;Kim, Dong-Wook;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.49-50
    • /
    • 2010
  • In this paper, we propose a boost type inverter system for the compensation of instantaneous voltage sag. The system compensate instantaneous voltage sag which magnitude is higher than 10[%] of normal input voltage. When input voltage is higher than 90[%] of normal value, the switch in boost converter is not operated and output voltage is controlled by modulation amplitude in PWM inverter.

  • PDF

Operating Characteristics Analysis of PWM Boost AC-AC Converter for Compensation of Voltage Sag (전압 Sag 보상을 위한 PWM Boost AC-AC 컨버터의 동작 특성 해석)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.315-319
    • /
    • 2003
  • This paper presents modeling and analysis of static and dynamic characteristics in PWM Boost AC-AC converter used for input voltage sag compensation of custom power. Especially, using circuit DQ transformation technique, an equivalent circuit in fundamental frequency domain is obtained which has all the system characteristics. Moreover, voltage gain and input power factor is analytically induced and linearized state equation at the specific operating point is given. Finally, simulation results show the validity of the proposed modelling and analyses.

  • PDF

Cascaded Boost Type Inverter System for Compensation of Voltage Sag (Voltage Sag 보상을 위한 종속 승압형 인버터 시스템)

  • Lee, Seung-Yong;Seo, Young-Min;Kim, Myeong-Soo;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.352-353
    • /
    • 2011
  • This paper proposes a cascaded boost type inverter system to compensate the voltage sag. If the voltage sag has appeared in input voltage, a cascaded boost converter would be operated to compensate voltage sag. The output voltage is kept constant by a direct-quadrature frame controller in the single-phase PWM inverter. The validity of proposed system is verified by simulation on the 300W cascaded boost type inverter system.

  • PDF

The study on the characteristics of operating limit of low voltage electric machine under the effects of voltage quality (순간전압품질이 저압 전기기기 운전한계에 미치는 특성연구)

  • Park, In-Deok;Jeong, Sung-Won;Gim, Jae-Hyeon;Lee, Geun-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.95-97
    • /
    • 2007
  • This paper studies on operating limit curve of low voltage electric machinery with respect to source voltage variation or sag. Also, it discusses electric machine and compensation equipment design methodology based on voltage quality effect assessment technology. Voltage quality standards, such as SEMI47, CBEMA, ITIC curve are regarded to examine the relation between time constants of load and sagging time of sag generator, the load(low voltage electric machinery) study. Voltage sag characteristics of loads, time constant and sag relation voltage-time operating limits are tested and verified.

  • PDF

The study on the characteristics of operating limit of low voltage electric machine under the effects of voltage quality (전압품질이 저압 전기기기 운전에 미치는 특성연구)

  • Park, In-Deok;Lee, Geun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.33-35
    • /
    • 2007
  • This paper studies on operating limit curve of low voltage electric machinery with respect to source voltage variation or sag. Also, it discusses electric machine and compensation equipment design methodology based on voltage quality effect assessment technology. Voltage quality standards, such as SEMI47, CBEMA, ITIC curve are regarded to examine the relation between time constants of load and sagging time of sag generator, the load(low voltage electric machinery) study. Voltage sag characteristics of loads, time constant and sag relation voltage-time operating limits are tested and verified.

  • PDF

Instantaneous Voltage Sag Corrector in Distribution Line Using Series Compensator (배전계통에서의 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • In this paper, a VSC(Voltage Sag Corrector) is discussed for the purpose of power quality enhancement. A fast detecting technique of voltage sag is accomplished through the detection of instantaneous value on synchronous reference frame. A robust characteristic against the noise is available by inserting the first order low pass filter in the detection circuit. The formula and the filter design process is described properly with the mathematical equations. Because the VSC system supply the active power to load, it is required to design the proper size of the energy storage system, In this paper, the capacitor bank is used as an energy storage system, and the size of the capacitor is designed from the point of view of input/output energy as the output power rating and the amplitude and duration time of the voltage sag. The simulation is accomplished by PSCAD/EMTDC.

  • PDF