• Title/Summary/Keyword: voltage regulator

Search Result 411, Processing Time 0.037 seconds

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan;Li, Zhousu;Guo, Kongming
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

Examination of the Cause of Damage to Capacitors for Home Appliances and Analysis of the Heat Generation Mechanism (가전용 커패시터의 소손원인 규명 및 발열 메커니즘 해석)

  • Park, Hyung-Ki;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.13-19
    • /
    • 2011
  • The purpose of this study is to examine the cause of damage to electrolytic capacitors and to present the heat generation mechanism in order to prevent the occurrence of similar problems. From the analysis results of electrolytic capacitors collected from accident sites, the fire causing area can be limited to the primary power supply for the initial accident. From the tests performed by applying overvoltage, surge, etc., it is thought that the fuse, varistor, etc., are not directly related to the accidents that occurred. The analysis of the characteristics using a switching regulator showed that the charge and discharge characteristics fell short of standard values. In addition, it is thought that heated electrolytic capacitors caused thermal stress to nearby resistances, elements, etc. It can be seen that the heat generation is governed by the over-ripple current, application of AC overvoltage, surge input, internal temperature increase, defective airtightness, etc. Therefore, when designing an electrolytic capacitor, it is necessary to comprehensively consider the correct polarity arrangement, appropriate voltage application, correct connection of equivalent series resistance(ESR) and equivalent series inductance(SEL), rapid charge and discharge control, sufficient margin of dielectric tangent, etc.

The Optimal Volt/Var Control Algorithm with Distributed Generation of Distribution System (분산전원이 연계된 배전계통의 최적 전압/무효전력 제어 알고리즘)

  • Kim, Young-In;Lim, Il-Hyung;Choi, Myeon-Song;Lee, Seung-Jae;Lee, Sung-Woo;Ha, Bok-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.298-305
    • /
    • 2010
  • In this paper, a new algorithm of optimal Volt/Var Control is proposed using Volt/Var control for the Distribution Automation System (DAS) with Distributed Generation (DG) based on the modeling of the distributed load and the distributed current. In the proposed, algorithm based on the modeling of the distributed load and the distributed current are estimated from constants of four terminals using the measurement of the current and power factor from a Feeder Remote Terminal Unit (FRTU) and DG data from RTU for DG. For the optimal Volt/Var Control, the gradient method is applied to find optimal solution for tap, capacity and power control of OLTC (On-Load Tap Changers), SVR (Step Voltage Regulator), PC (Power Condenser) and DG (Distributed Generation). In the case studies, the estimation and control of the voltages have been testified in a radial distribution system with DG using matlab program.

A New Distribution System Power Flow Method Using Symmetrical Components (대칭성분을 이용한 3상 배전계통 조류계산 기법)

  • Choe, Jeong-Hwan;Jeong, Seong-Il;Park, Je-Yeong;Kim, Gwang-Ho;Kim, Jae-Eon;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • This paper proposes a new power flow method for distribution system analysis by modifying the conventional back/forward sweep method using symmetrical components. Since the proposed method backward and forward sweeps with the variables expressed by symmetrical components, this method reduces computation time for matrix calculations; therefore, it is able to reduce the computational burden for real-time distribution network analysis. The proposed method was also developed to effectively analyze the unbalanced distribution system installing AVR(Auto Voltage Regulator), shunt capacitors. The proposed algorithm was compared with the conventional Back/forward Sweep method by applying both methods to three phase unbalanced distribution system of IEEE 123-bus model, and the test results showed that the proposed method would outperformed the conventional method in real-time distribution system analysis.

Economic Evaluation of Step Voltage Regulator in Distribution Systems (배전계통에 있어서 선로전압조정장치의 경제성 평가에 관한 연구)

  • Rho, Dae-Seok;Lee, Eun-Mi;Park, Chang-Ho;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.140-143
    • /
    • 2003
  • 배전선로에서 부하가 증가함에 따라 주상변압기의 탭 조정만으로는 모든 수용가단 전압을 규정치($220{\pm}6%$) 이내로 유지시킬 수가 없게 된다. 따라서, 수용가단 전압의 품질을 규정치 이내로 유지할 수 있는 보강공사가 필요하게 된다. 현재는 수용가단 전압품질에 문제가 발생하지 않으나, 선로의 부하가 증가 될수록 통과전류의 양이 많아져, 전압강하가 높아지기 때문에 일부 수용가에 저전압이 발생하게 될 가능성이 있게 된다. 여기서는 부하증가(부하증가율 : 1%, 2%, 3%, 4%, 5%)에 대한 대책으로 다음과 같은 3가지 대안을 고려하기로 한다. 본 연구에서는 1) 선로전압조정장치(SVR)의 설치 2) 회선증강(ACSR $95mm^2$ $\rightarrow$ ACSR $160mm^2$) 3) 회선신설(전압강하 5%이상 지점에 회선 추가)에 대한 경제성을 현재가치 환산법에 의해 평가해 보고, 가장 적정한 대안을 제안하여 배전계통 계획 및 운용에 대한 합리적인 투자 대안을 제시한다.

  • PDF

The Design of Squib Circuit using Hybrid Interlock (하이브리드 인터락을 적용한 점화회로 설계)

  • Jang, Bu-Cheol;Cho, Kil-Seok;Shin, Jin-Beom;Koo, Bong-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.404-412
    • /
    • 2014
  • We proposed a design method for squib current supply & interlock circuits in guided-missile fire control systems. In order to design squib current supply circuits, various missile squib loads including line resistance and squib devices have to be considered in advance minimizing probability of redesign of circuits and reducing the development cost by implementing the most proper squib current supply circuit. Also, we presented a hardware interlock logic instead of the commonly used software safety logic to improve the safety of guided-missile fire control systems. The proposed squib interlock circuit enhances safety requirements of guided-missile fire control systems. We confirmed that simulation and measurement results of the proposed design method are the same as theoretical analysis results.

AC/DC flyback converter without photo-coupler having Low standby power and precise control of the output voltage (저 대기전력 및 정확한 출력전압 제어가 가능한 포토커플러 없는 AC/DC 플라이백 컨버터)

  • Jo, Kang-Ta;Heo, Tae-Won;Choi, Heung-Gyun;Kim, Hugh;Han, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.173-174
    • /
    • 2014
  • 본 논문에서는 저 대기전력 구현이 가능하며 정확한 출력전압 제어가 가능한 SSR(Secondary Side Regulator) 플라이백 컨버터를 제안하였다. 제안 SSR 플라이백 컨버터는 2차 측에 control IC를 사용하여 별도의 제어기(TL431) 및 포토커플러를 제거하여 구조가 간단하고 대기모드 시 TL431의 바이어스 전류에 의한 전력소모를 줄일 수 있으므로 대기전력을 최소화 할 수 있으며 출력전압을 직접 검출하여 정확하게 출력을 제어할 수 있다. 한편 1차 측의 위치한 게이트 구동을 위해 절연된 1-2차 측간 신호를 전송하는 PET(Pulse Edge Transmitter)를 제안하였으며 제안 방식은 IC로의 직접화가 매우 용이하여 1-2차 측 IC와 제안 PET를 one-chip화 할 수 있다. 제안 회로의 타당성 검증을 위해 10W급 Adaptor의 시작품을 제작하였고, 이를 이용한 실험결과를 바탕으로 제안 시스템의 타당성을 검증한다.

  • PDF

A 13.56 MHz Radio Frequency Identification Transponder Analog Front End Using a Dynamically Enabled Digital Phase Locked Loop

  • Choi, Moon-Ho;Yang, Byung-Do;Kim, Nam-Soo;Kim, Yeong-Seuk;Lee, Soo-Joo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.20-23
    • /
    • 2010
  • The analog front end (AFE) of a radio frequency identification transponder using the ISO 14443 type A standard with a 100% amplitude shift keying (ASK) modulation is proposed in this paper and verified by circuit simulations and measurements. This AFE circuit, using a 13.56 MHz carrier frequency, consists of a rectifier, a modulator, a demodulator, a regulator, a power on reset, and a dynamically enabled digital phase locked loop (DPLL). The DPLL, with a charge pump enable circuit, was used to recover the clock of a 100% modulated ASK signal during the pause period. A high voltage lateral double diffused metal-oxide semiconductor transistor was used to protect the rectifier and the clock recovery circuit from high voltages. The proposed AFE was fabricated using the $0.18\;{\mu}m$ standard CMOS process, with an AFE core size of $350\;{\mu}m\;{\times}\;230\;{\mu}m$. The measurement results show that the DPLL, using a demodulator output signal, generates a constant 1.695 MHz clock during the pause period of the 100% ASK signal.

Power System Rotor Angle Stability Improvement via Coordinated Design of AVR, PSS2B, and TCSC-Based Damping Controller

  • Jannati, Jamil;Yazdaninejadi, Amin;Nazarpour, Daryush
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.341-350
    • /
    • 2016
  • The current study is dedicated to design a novel coordinated controller to effectively increase power system rotor angle stability. In doing so, the coordinated design of an AVR (automatic voltage regulator), PSS2B, and TCSC (thyristor controlled series capacitor)-based POD (power oscillation damping) controller is proposed. Although the recently employed coordination between a CPSS (conventional power system stabilizer) and a TCSC-based POD controller has been shown to improve power system damping characteristics, neglecting the negative impact of existing high-gain AVR on the damping torque by considering its parameters as given values, may reduce the effectiveness of a CPSS-POD controller. Thus, using a technologically viable stabilizer such as PSS2B rather than the CPSS in a coordinated scheme with an AVR and POD controller can constitute a well-established design with a structure that as a high potential to significantly improve the rotor angle stability. The design procedure is formulated as an optimization problem in which the ITSE (integral of time multiplied squared error) performance index as an objective function is minimized by employing an IPSO (improved particle swarm optimization) algorithm to tune adjustable parameters. The robustness of the coordinated designs is guaranteed by concurrently considering some operating conditions in the optimization process. To evaluate the performance of the proposed controllers, eigenvalue analysis and time domain simulations were performed for different operating points and perturbations simulated on 2A4M (two-area four-machine) power systems in MATLAB/Simulink. The results reveal that surpassing improvement in damping of oscillations is achieved in comparison with the CPSS-TCSC coordination.

Analysis and Compensation of Current Measurement Error in Digitally Controlled AC Drives (디지털 제어 교류 전동기 구동시스템의 전류 측정 오차 해석 및 보상)

  • 송승호;최종우;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.462-473
    • /
    • 1999
  • This paper addresses the current measurement issue of all digital field oriented control of ac motors. The p paper focuses on the effect of low-pass filter and also on the sampling of the fundamental component of the m motor current. The low-pass filter, which suppresses the switching noise of the motor current, introduces v variable phase delay according to the current ripple frequency. It is shown that the current sampling error c consists of the fundamental component and high frL'quency ripple components. In this paper, the dependency of t this current sampling e$\pi$or on the reference voltage vector is investigated analytically and a sampling technique i is proposed to minimize the error. The work is based on the three phase symmetry pulse width modulation l inverter driving an induction machine. With this technique, the bandwidth of current regulator can be extended t to the limit given by the switching frequency of the inverter and more precise torque regulation is possible.

  • PDF