• 제목/요약/키워드: voltage profile

검색결과 354건 처리시간 0.027초

PC1D 시뮬레이션을 이용한 결정질 실리콘 태양전지의 도핑 프로파일 모델링 (The Doping Profile Modeling of Crystalline Silicon Solar Cell with PC1D simulation)

  • 최성진;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.149-153
    • /
    • 2011
  • The PC1D is widely used for modeling the properties of crystalline silicon solar cell. Optimized doping profile in crystalline silicon solar cell fabrication is necessary to obtain high conversion efficiency. Doping profile in the forms of a uniform, gaussian, exponential and erfc function can be simulated using the PC1D program. In this paper, the doping profiles including junction depth, dopant concentration on surface and the form of doping profile (gaussian, gaussian+erfc function) were changed to study its effect on electrical properties of solar cell. As decreasing junction depth and doping concentration on surface, electrical properties of solar cell were improved. The characteristics for the solar cells with doping profile using the combination of gaussian and erfc function showed better open-circuit voltage, short-circuit current and conversion efficiency.

  • PDF

짧은 채널 효과를 감소시키기 위한 이온주입 변수의 조절

  • 유종선;김여환
    • ETRI Journal
    • /
    • 제9권1호
    • /
    • pp.97-103
    • /
    • 1987
  • 짧은 채널($L<1\mum$) MOSFET의 전기적 변수, 특히 문턱전압(threshold voltage)을 최적화시키기 위하여 분석적 문턱전압 모델을 개발하였다. 채널 영역에서의 붕소profile은 계단 (step) profile로 근사시켜 표면전하층과 기판전하층으로 구성하였다. 최대공핍층내에 있는 두 전하층의 각각에 대하여 기하학적으로 근사시킨 전하분배(charge sharing)모델을 적용하고 이차원적 분석을 이용하여 짧은 채널 효과를 계산하였다. 본 모델을 실험치와 비교하고 이온주입 공정의 최적조건을 이끌어내는 데 필요한 변수에 대하여 논의하였다.

  • PDF

Optimal Shunt Compensation for Improving Voltage Stability and Transfer Capability in Metropolitan Area of the Korean Power System

  • Choi, YunHyuk;Lee, Byongjun;Kim, TaeKyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1502-1507
    • /
    • 2015
  • This paper deals with shunt compensation to eliminate voltage violation and enhance transfer capability, which is motivated towards implementation in the Korean power system. The optimal shunt compensation algorithm has demonstrated its effectiveness in terms of voltage accuracy and reducing the number of actions of reactive power compensating devices. The main shunt compensation devices are capacitor and reactor. Effects of control devices are evaluated by cost computations. The control objective at present is to keep the voltage profile of a key bus within constraints with minimum switching cost. A robust control strategy is proposed to make the control feasible and optimal for a set of power-flow cases that may occurs important event from system. Case studies with metropolitan area of the Korean power system are presented to illustrate the method.

Coordinated Voltage-Reactive Power Control Schemes Based on PMU Measurement at Automated Substations

  • Choi, Yun-Hyuk;Kang, Sang-Gyun;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1400-1407
    • /
    • 2015
  • This paper deals with methodology to control an automatic substation system. The control system can predict the power system condition by a voltage stability index (VSI). The strategies in this paper is called as Voltage-Reactive Power Control (VRPC), which regulates an abnormal voltage of a target substation by using coordination between tap changers and shunt capacitor/reactor. This method is efficient for better voltage profile. The monitoring substation includes whole of substations around the contingency event. The control quantities of the monitoring substations are decided by the calculation of the VSI, called as a Z-index. Case studies with BC Hydro-Quebec system are presented to illustrate this approach using real-time simulator.

Voltage Impacts of a Variable Speed Wind Turbine on Distribution Networks

  • Kim, Seul-Ki;Kim, Eung-Sang
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권4호
    • /
    • pp.206-213
    • /
    • 2003
  • The main purpose of this paper is to present a simulation model for assessing the impacts of a variable speed wind turbine (VSWT) on the distribution network and perform a simulation analysis of voltage profiles along the wind turbine installed feeder using the presented model. The modeled wind energy conversion system consists of a fixed pitch wind turbine, a synchronous generator, a rectifier and a voltage source inverter (VSI). Detailed study on the voltage impacts of a variable speed wind turbine is conducted in terms of steady state and dynamic behaviors. Various capacities and different modes of variable speed wind turbines are simulated and investigated. Case studies demonstrate how feeder voltages are influenced by capacity and control modes of wind turbines and changes in wind speed under different network conditions. Modeling and simulation analysis is based on PSCAD/EMTDC a software package.

MnO2입자 크기에 따른 아연공기전지의 특성연구 (Size Effects of the Catalyst on Characteristics of Zn/Air Batteries)

  • 김지훈;엄승욱;문성인;윤문수;김주용;박정식;박정후
    • 한국전기전자재료학회논문지
    • /
    • 제16권12호
    • /
    • pp.1150-1154
    • /
    • 2003
  • The voltage profile during discharge of the zinc air battery has very flat pattern until reach to end of discharge voltage. But, when zinc air battery is discharged by high current, the discharge voltage and energy becomes low. Therefore, we focused on effects of catalyst size to solve this problems by increasing active sites of oxygen reduction reaction. The size of catalyst was reduced from 27 to l${\mu}{\textrm}{m}$ and we examined average discharge voltage, capacity, energy, resistance and characteristics during GSM pulse discharge of zinc air battery with change of current density. And we also measured porosity of the cathode according to the ASTM. So we have got improvement of average discharge voltage and energy when catalyst was minimized and we have got optimum size of catalyst at 5${\mu}{\textrm}{m}$.

ULTC 와 SVR 이 설치된 배전계통에서 LDC Parameters 을 고려한 최대 DG 용량 산정 (The Installable Maximum DG Capacity Considering LDC Parameters of ULTC and SVR in Distribution Systems)

  • 김미영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.27-28
    • /
    • 2008
  • For stable and sustainable energy supply, distributed generator (DG) has become an essential and indispensable element from environmental and energy security perspectives. However, installation of DG in distribution systems may cause negative affects on feeders because power outputs of DG could be changed irregularly. One of major negative affects is variation in voltage profile. In general, voltage regulation devices such as under load tap changer (ULTC) at distribution substation and step voltage regulator (SVR) along feeder in distribution system are used to maintain customers' receiving voltage within a predetermined range. These regulators are controlled by line drop compensation (LDC) method which calls for two parameters; the equivalent impedance and the load center voltage. Therefore, consideration of DG outputs in the LDC parameter design procedure may give large impact on the installable DG capacity. This paper proposes a method that estimates maximum Installable DG capacity considering LDC parameters of ULTC and SVR. The proposed algorithm is tested with model network.

  • PDF

활성탄 종류에 따른 아연공기전지용 Cathode의 전기화학적 특성 연구 (A Study on the Electrochemical Properties of the Cathode upon Different Kinds of Activated carbon in Zinc/Air Battery)

  • 김지훈;엄승욱;문성인;윤문수;김주용;박정식;박정후
    • 한국전기전자재료학회논문지
    • /
    • 제17권4호
    • /
    • pp.415-421
    • /
    • 2004
  • The voltage profile of Zinc/Air battery during discharge has very flat pattern in a given voltage range, But, if not enough the porosity in cathode, as a result of that capacity, energy and discharge voltage of batteries become low. Therefore, we focused the pore effects in activated carbon for cathode. We examined discharge voltage, specific capacity, specific energy, resistance and characteristics during the GSM pulse discharge upon different kinds of activated carbon in Zinc/Air battery, Also we measured porosity of the air cathode according to the ASTM. So we achieved improvement of specific capacity, specific energy and discharge voltage according to increase meso pores of activated carbon. We found the optimized activated carbon material for Zinc/Air battery.

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.

유도결합 $Cl_2$$HBr/Cl_2$ 플라즈마를 이용한 STI용 실리콘 Shallow trench 식각공정에 관한 연구 (A study on the silicon shallow trench etch process for STI using inductively coupled $Cl_2$ and TEX>$HBr/Cl_2$ plasmas)

  • 이주훈;이영준;김현수;이주욱;이정용;염근영
    • 한국진공학회지
    • /
    • 제6권3호
    • /
    • pp.267-274
    • /
    • 1997
  • 고밀도 유도결합 $Cl_2$ 및 HBr/$Cl_2$ 플라즈마를 이용하여 차세대 반도체 집적회로에 사용가능한 STI(Shallow Trench Isolation)구조에서 trench 식각시 trench etch profile 및 격자손상에 영향을 미치는 공정변수의 효과에 대하여 연구하였다. 식각결과 $Cl_2$만을 사용한 경우에는 trench 식각공정 동안 화학적 측면식각의 증가로 인하여 등방성 식각이 얻어지고 이는 유도입력 전력이 증가하고 바이어스 전압이 감소함에 따라 이의 경향이 증가하였다. 측면식각의 정도는 $Cl_2$$N_2$$O_2$의 첨가에 따라 감소하였다. 순수 HBr을 사용한 경우에 있어서는 Br 라디칼이 Cl 라디칼에 비하여 자발적인 실리콘 식각의 민감도가 감소하여 positive angle의 식각형상이 얻어졌으며 HBr내에 $Cl_2$의 증가에 따라 이방성 식각이 얻어졌 다. 물리적인 격자손상을 투과전자현미경으로 관찰한 결과 <$Cl_2/N_2$및 HBr을 함유한 식각가 스를 사용한 경우에 trench표면에서 결함이 관찰되었다.

  • PDF