• Title/Summary/Keyword: void characteristic

Search Result 101, Processing Time 0.024 seconds

Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent (기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구)

  • Min, Tae-Beom;Woo, Young-Je;Lee, han-Seung
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

Effect of Surface Film on Void Behavior in Composite Integrated Structure (표면접착필름이 복합재 일체형 구조물에서의 기공 거동에 미치는 영향)

  • Park, Dong-Cheol;Kim, Yun-Hae
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.147-152
    • /
    • 2020
  • In this study, void behavior of composite laminate by local internal pressure gradient due to structural geometry and surface film application condition was experimentally evaluated through fabrication of spar/skin integrated structure specimens. Viscosity comparison and thermal analysis for both carbon fiber prepreg and surface film were conducted and cure characteristic and rate difference were analyzed. 2 types of spar/skin integrated structural specimens were prepared based on different application condition of surface film. Subsequently, those specimens were evaluated through visual surface inspection, non-destructive and destructive inspection. In a specimen #1 with full application of surface film, low pressurized area of composite laminate created by pressure gradient of structural geometry had voids. It exhibited that voids could not be evacuated and were locked in cured laminate by the influence of pre-cured surface film with relatively faster cure rate. In a specimen #2 without surface film, it revealed that all internal voids disappeared in the cured laminate. Therefore, it is verified that surface film acts as barrier film preventing void movement and evacuation during autoclave cure.

Parameter calibrations and application of micromechanical fracture models of structural steels

  • Liao, Fangfang;Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.153-174
    • /
    • 2012
  • Micromechanical facture models can be used to predict ductile fracture in steel structures. In order to calibrate the parameters in the micromechanical models for the largely used Q345 steel in China, uniaxial tensile tests, smooth notched tensile tests, cyclic notched bar tests, scanning electron microscope tests and finite element analyses were conducted in this paper. The test specimens were made from base metal, deposit metal and heat affected zone of Q345 steel to investigate crack initiation in welded steel connections. The calibrated parameters for the three different locations of Q345 steel were compared with that of the other seven varieties of structural steels. It indicates that the toughness index parameters in the stress modified critical strain (SMCS) model and the void growth model (VGM) are connected with ductility of the material but have no correlation with the yield strength, ultimate strength or the ratio of ultimate strength to yield strength. While the damage degraded parameters in the degraded significant plastic strain (DSPS) model and the cyclic void growth model (CVGM) and the characteristic length parameter are irrelevant with any properties of the material. The results of this paper can be applied to predict ductile fracture in welded steel connections.

Characteristic of Electrical Degradations due to Variation of Internal Void Shape (내부보이드 형상변화에 따른 전기적열화특성)

  • Kim, T.Y.;Kim, K.S.;Ko, K.Y.;Lee, S.W.;Lee, C.H.;Lee, C.H.;Kim, G.Y.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.82-85
    • /
    • 2003
  • 산업의 고도화 및 환경오염의 문제로 1970년대부터 실리콘고무를 이용한 애자의 사용이 시도되기 시작되었다. 그로 인해 실리콘 고무의 표면열화에 대한 수많은 연구가 현재까지 행해지고 있다. 그러나 고온성 형압즉방식으로 제작하는 유기애자의 경우 제조시 발생할 수 있는 내부보이드에 대한 연구는 미흡한 현실이다. 이에 본 연구에서는 실리콘고무의 내부보이드의 형태변화에 따른 전기적열화특성을 연구하기 위하여 3층으로 적층시킨 실리콘 고무의 중간층에 임의적으로 4가지형태의 내부보이드를 성형하여 전압을 변화시키면서 방전전류 및 방전전력을 측정하였다. 그 결과, 보이드의 존재로 방전전류 및 방전전력의 증가를 볼 수 있었으며, 보이드형상의 내부각이 좁을수록 방전전류 및 방전전력값이 커지는 것을 볼 수 있었다.

  • PDF

The Analysis of Indirect Tensile Strength (ITS) Characteristic using Physical Properties of Asphalt Mixtures (아스팔트 혼합물의 물리적 특성을 이용한 간접인장강도의 특성 분석)

  • Lee, Moon Sup
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2014
  • PURPOSES : This study was performed to evaluate the possibility of Indirect Tensile Strength (ITS) as a testing method that can predict cracking on pavement. METHODS : Three asphalt binders and one kind of aggregate were used in this study, and all asphalt mixtures were produced using Gyratory Compactor followed asphalt mix design. The ITS test was performed for the mixture which are artificially short-term aged using the oven. The ITS properties were analyzed by air void, compaction temperature, asphalt content, and asphalt binder. RESULTS : The results of this study indicated that (1) the compaction temperature did not show relationship with the ITS test; (2) there was no specific trend between the asphalt content and the ITS test; (3) the ITS could reveal the property of kinds of asphalt binders; (4) the asphalt mixture that were produced at optimum temperature suggested by manufacturer did not exhibit optimum result for all asphalt binder. CONCLUSIONS : The possibility of ITS was confirmed from this study for replacement of the Marshall Stability method. However, it needs to perform in further studies of aggregate and compaction property to suggest a new ITS standard value.

Characteristic of GaN Growth on the Periodically Patterned Substrate for Several Reactor Configurations (반응로 형상에 따른 주기적으로 배열된 패턴위의 GaN 성장 특성)

  • Kang, Sung-Ju;Kim, Jin-Taek;Pak, Bock-Choon;Lee, Cheul-Ro;Baek, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.225-233
    • /
    • 2007
  • The growth of GaN on the patterned substances has proven favorable to achieve thick, crack-free GaN layers. In this paper, numerical modeling of transport and reaction of species is performed to estimate the growth rate of GaN from tile reaction of TMG(trimethly-gallium) and ammonia. GaN growth rate was estimated through the model analysis including the effect of species velocity, thermal convection and chemical reaction, and thermal condition for the uniform deposition was to be presented. The effect of shape and construction of microscopic pattern was also investigated using a simulator to perform surface analysis, and a review was done on the quantitative thickness and shape in making GaN layer on the pattern. Quantitative analysis was especially performed about the shape of reactor geometry, periodicity of pattern and flow conditions which decisively affect the quality of crystal growth. It was found that the conformal deposition could be obtained with the inclination of trench ${\Theta}>125^{\circ}$. The aspect ratio was sensitive to the void formation inside trench and the void located deep in trench with increased aspect ratio.

Microstructure and electrical properties of high power laser thermal annealing on inkjet printed Ag films

  • Yoon, Yo-Han;Yi, Seol-Min;Yim, Jung-Ryoul;Lee, Ji-Hoon;Joo, Young-Chang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.36.2-36.2
    • /
    • 2009
  • In this work, the high power CW Nd:YAG laser has been used for thermal treatment of inkjet printed Ag films-involving eliminating organic additives (dispersant, binder, and organic solvent) of Ag ink and annealing Ag nanoparticles. By optimizing laser parameters, such as laser power and defocusing value, the laser energy can totally be converted to heat energy, which is used to thermal treatment of inkjet printed Ag films. This results in controlling the microstructures and the resistivity of films. We investigated the thermal diffusion mechanisms during laser annealing and the resulting microstructures. The impact of high power laser annealing on microstructures and electrical characteristic of inkjet printed Ag films is compared to those of the films annealed by a conventional furnace annealing. Focused ion beam (FIB) channeling image shows that the laser annealed Ag films have large columnar grains and dense structure (void free), while furnace annealed films have tiny grains and exhibit void formation. Due to these microstructural characteristics of laser annealed films, it has better electrical property (low resistivity) compared to furnace annealed samples.

  • PDF

A Study on the Space Formative Concepts of Traditional Temple viewed in the Seon Ecology - Focused on Traditional Seon Buddhist Temple of Joseon Dynasty - (선(禪)생태학관점에서 본 전통사찰의 공간조형개념 연구 - 조선시대 선(禪)적 특성이 두드러진 전각을 중심으로 -)

  • Lee, Go-Eun;Kim, Kai-Chun
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.6
    • /
    • pp.58-67
    • /
    • 2013
  • Since environmental pollution emerges as an important issue, integration of academic discipline has been accomplished for development of environmental ethics. Combination of Buddhism and Ecology is the instance of this background. The background of this research is the assumption that from Seon Ecology standpoint, Buddhist temple would define conception of Seon Ecology specifically. The study based on advanced study about Seon Ecology, the peculiarity of Seon Ecology was dependent originations, order, the nature of Buddha, moderation, and impersonated nature. In addition, this study researched how these peculiarity has relation with traditional temples. This attempt has a significance in that finding a new approach of interpreting traditional temple and possibility of Seon Ecology Seon Ecology space formative concepts of traditional temple is cyclical allness, transitory balance, Denial of perfection and natural void characteristics from Seon Ecological studies. This study examined how characteristic of Seon Ecology is reflected in traditional temple, through analyzing Buseoksa-Anyangru, Bongjeongsa-Yeonsanam, Seonamsa simgeomdang, Songgwangsa woohwagak, Hwaamsa woohwaru which have remarkable characteristic of selection using above space formative concepts. traditional temple was filled with life coexisted with dynamics, independence, and equality within interrelationship between nature and architecture.

Surface Reforming of Engineering Plastic for adding nano-ATH (nano-ATH 첨가를 통한 엔지니어링 플라스틱의 표면개질)

  • Heo, Jun;Lee, Seung-Su;Jung, Eui-Hwan;Lim, Kee-Joe;Kang, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.259-259
    • /
    • 2009
  • Surface contamination and leakage current have caused operating problems. A flashover in a substation may result in destruction of an insulator or many others electrical equipment. Engineering plastics have good characteristic (light weight, good productivity and little of void) as compare with epoxy or porcelain insulators. Outdoor insulator must have resistance to contamination. However, they are not suited to outdoor insulator by reason of being not good hydrophobic. RTV has a good property of hydrophobic and ATH has characteristic obstructing exothermic reaction. In order to reduce the incidence of insulator flashover and damage, the silicon rubber contained nano size ATH coat on surface of engineering plastics. In this paper, it compares resistance tracking of the engineering plastic coated RTV with that of non-coated engineering plastic and ATH filled composites performed much better than non-filled composites.

  • PDF

Investigation of tracking resistance of engineering plastic and engineering plastic coated silicon rubber (엔지니어링 플라스틱과 실리콘 고무가 코팅된 엔지니어링 플라스틱의 내트래킹성 검토)

  • Heo, Jun;Jung, Eui-Hwan;Lim, Jong-Nam;Lim, Kee-Joe;Kang, Seong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1449_1450
    • /
    • 2009
  • Surface contamination and leakage current have caused operating problems. A flashover in a substation may result in destruction of an insulator or many others electrical equipment. Engineering plastics have good characteristic (light weight, good productivity and little of void) as compare with epoxy or porcelain insulators. Outdoor insulator must have resistance to contamination. However, they are not suited to outdoor insulator by reason of being not good hydrophobic. RTV has a good property of hydrophobic and ATH has characteristic obstructing exothermic reaction. In order to reduce the incidence of insulator flashover and damage, the silicon rubber contained nano size ATH coat on surface of engineering plastics. In this paper, it compares resistance tracking of the engineering plastic coated RTV with that of non-coated engineering plastic and ATH filled composites performed much better than non-filled composites.

  • PDF