• Title/Summary/Keyword: vocabulary database

Search Result 53, Processing Time 0.026 seconds

Vocabulary Recognition Model using a convergence of Likelihood Principla Bayesian methode and Bhattacharyya Distance Measurement based on Vector Model (벡터모델 기반 바타챠랴 거리 측정 기법과 우도 원리 베이시안을 융합한 어휘 인식 모델)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.165-170
    • /
    • 2015
  • The Vocabulary Recognition System made by recognizing the standard vocabulary is seen as a decline of recognition when out of the standard or similar words. The vector values of the existing system to the model created by configuring the database was used in the recognition vocabulary. The model to be formed during the search for the recognition vocabulary is recognizable because there is a disadvantage not configured with a database. In this paper, it induced to recognize the vector model is formed by the search and configuration using a Bayesian model recognizes the Bhattacharyya distance measurement based on the vector model, by applying the Wiener filter improves the recognition rate. The result of Convergence of two method's are improved reliability experiments for distance measurement. Using a proposed measurement are compared to the conventional method exhibited a performance of 98.2%.

Study on Efficient Generation of Dictionary for Korean Vocabulary Recognition (한국어 음성인식을 위한 효율적인 사전 구성에 관한 연구)

  • Lee Sang-Bok;Choi Dae-Lim;Kim Chong-Kyo
    • Proceedings of the KSPS conference
    • /
    • 2002.11a
    • /
    • pp.41-44
    • /
    • 2002
  • This paper is related to the enhancement of speech recognition rate using enhanced pronunciation dictionary. Modern large vocabulary, continuous speech recognition systems have pronunciation dictionaries. A pronunciation dictionary provides pronunciation information for each word in the vocabulary in phonemic units, which are modeled in detail by the acoustic models. But in most speech recognition system based on Hidden Markov Model, actual pronunciation variations are disregarded. Without the pronunciation variations in the speech recognition system, the phonetic transcriptions in the dictionary do not match the actual occurrences in the database. In this paper, we proposed the unvoiced rule of semivowel in allophone rules to pronunciation dictionary. Experimental results on speech recognition system give higher performance than existing pronunciation dictionaries.

  • PDF

A Study on Vocabulary-Independent Continuous Speech Recognition System for Intelligent Home Network System (지능형 홈네트워크 시스템을 위한 가변어휘 연속음성인식시스템에 관한 연구)

  • Lee, Ho-Woong;Jeong, Hee-Suk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.37-42
    • /
    • 2008
  • In this paper, the vocabulary-independent continuous speech recognition system for speech control of intelligent home-network is presented. This study suggests a conversational scenario of continuous natural vocabulary based upon keywords for recognition on natural speech command, and a way of optimizing the recognition system by constructing a recognition system and database based upon keywords.

  • PDF

Decision Tree Learning Algorithms for Learning Model Classification in the Vocabulary Recognition System (어휘 인식 시스템에서 학습 모델 분류를 위한 결정 트리 학습 알고리즘)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.153-158
    • /
    • 2013
  • Target learning model is not recognized in this category or not classified clearly failed to determine if the vocabulary recognition is reduced. Form of classification learning model is changed or a new learning model is added to the recognition decision tree structure of the model should be changed to a structural problem. In order to solve these problems, a decision tree learning model for classification learning algorithm is proposed. Phonological phenomenon reflected sound enough to configure the database to ensure learning a decision tree learning model for classifying method was used. In this study, the indoor environment-dependent recognition and vocabulary words for the experimental results independent recognition vocabulary of the indoor environment-dependent recognition performance of 98.3% in the experiment showed, vocabulary independent recognition performance of 98.4% in the experiment shown.

On the Characteristics and Information Retrieval Performance of Full-Text Databases (전문데이터베이스의 특성과 정보검색성능)

  • Cho Myung-Hi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.17
    • /
    • pp.339-366
    • /
    • 1989
  • Appearance of full-text online is the most encouraging phenomenon ·during the development of databases. The full-text databases of today is derived from by-product of electronic publication of printed materials. Now, there are also some movements toward electronic production of documents in Korea although not powerful. The present study is designed to examine the characteristics and effective retrieval method of full-text databases now commercially available through various vendors. The outline of this paper IS as follows: First, background and present situation of existing full-text database services through national and worldwide are examined. Second, free-text searching system of full-text databases is compared with controlled vocabulary system. The factors influencing on free-text retrieval performance, searching thesaurus, and hybrid or compromising system, which is using limited controlled vocabulary in conjunction with natural language for the enrichment needed for practical operation of the . system, are examined. Third, user demands through the analysis of preceding studies on 'various types of full-text databases are recognised. Fouth, application of CD-ROM full-text database to the libraries and information centers is examined as prospective resources for them. Finally, some problems and prospect of full-text databases are presented.

  • PDF

An Energy-Efficient Matching Accelerator Using Matching Prediction for Mobile Object Recognition

  • Choi, Seongrim;Lee, Hwanyong;Nam, Byeong-Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.251-254
    • /
    • 2016
  • An energy-efficient object matching accelerator is proposed for mobile object recognition based on matching prediction scheme. Conventionally, vocabulary tree has been used to save the external memory bandwidth in object matching process but involved massive internal memory transactions to examine each object in a database. In this paper, a novel object matching accelerator is proposed based on matching predictions to reduce unnecessary internal memory transactions by mitigating non-target object examinations, thereby improving the energy-efficiency. Experimental results show a 26% reduction in power-delay product compared to the prior art.

Speech Recognition Performance Improvement using a convergence of GMM Phoneme Unit Parameter and Vocabulary Clustering (GMM 음소 단위 파라미터와 어휘 클러스터링을 융합한 음성 인식 성능 향상)

  • Oh, SangYeob
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.35-39
    • /
    • 2020
  • DNN error is small compared to the conventional speech recognition system, DNN is difficult to parallel training, often the amount of calculations, and requires a large amount of data obtained. In this paper, we generate a phoneme unit to estimate the GMM parameters with each phoneme model parameters from the GMM to solve the problem efficiently. And it suggests ways to improve performance through clustering for a specific vocabulary to effectively apply them. To this end, using three types of word speech database was to have a DB build vocabulary model, the noise processing to extract feature with Warner filters were used in the speech recognition experiments. Results using the proposed method showed a 97.9% recognition rate in speech recognition. In this paper, additional studies are needed to improve the problems of improved over fitting.

Resources for assigning MeSH IDs to Japanese medical terms

  • Tateisi, Yuka
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.16.1-16.4
    • /
    • 2019
  • Medical Subject Headings (MeSH), a medical thesaurus created by the National Library of Medicine (NLM), is a useful resource for natural language processing (NLP). In this article, the current status of the Japanese version of Medical Subject Headings (MeSH) is reviewed. Online investigation found that Japanese-English dictionaries, which assign MeSH information to applicable terms, but use them for NLP, were found to be difficult to access, due to license restrictions. Here, we investigate an open-source Japanese-English glossary as an alternative method for assigning MeSH IDs to Japanese terms, to obtain preliminary data for NLP proof-of-concept.

On The Full-Text Database Retrieval and Indexing Language

  • Chang, Hye-Rhan
    • Journal of the Korean Society for information Management
    • /
    • v.4 no.1
    • /
    • pp.24-46
    • /
    • 1987
  • The recent growth of full-text database operations has brought new opportunities for subject access. The fundamental problem of subject access in the online environment is the indexing language and technology. The purpose of this paper is to identify the characteristics and capabilities of full-text retrieval as compared to traditional bibliographic retrieval. Retrieval performance of indexing languages, full-text systems features achieved so far, and the new role of a controlled vocabulary, are examined. This paper also includes a review of the research on full-text retrieval performance.

  • PDF

Constructing Japanese MeSH term dictionaries related to the COVID-19 literature

  • Yamaguchi, Atsuko;Takatsuki, Terue;Tateisi, Yuka;Soares, Felipe
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.25.1-25.5
    • /
    • 2021
  • The coronavirus disease 2019 (COVID-19) pandemic has led to a flood of research papers and the information has been updated with considerable frequency. For society to derive benefits from this research, it is necessary to promote sharing up-to-date knowledge from these papers. However, because most research papers are written in English, it is difficult for people who are not familiar with English medical terms to obtain knowledge from them. To facilitate sharing knowledge from COVID-19 papers written in English for Japanese speakers, we tried to construct a dictionary with an open license by assigning Japanese terms to MeSH unique identifiers (UIDs) annotated to words in the texts of COVID-19 papers. Using this dictionary, 98.99% of all occurrences of MeSH terms in COVID-19 papers were covered. We also created a curated version of the dictionary and uploaded it to Pub-Dictionary for wider use in the PubAnnotation system.